Metamath Proof Explorer


Theorem ixpeq2d

Description: Equality theorem for infinite Cartesian product. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses ixpeq2d.1 x φ
ixpeq2d.2 φ x A B = C
Assertion ixpeq2d φ x A B = x A C

Proof

Step Hyp Ref Expression
1 ixpeq2d.1 x φ
2 ixpeq2d.2 φ x A B = C
3 2 ex φ x A B = C
4 1 3 ralrimi φ x A B = C
5 ixpeq2 x A B = C x A B = x A C
6 4 5 syl φ x A B = x A C