Metamath Proof Explorer


Theorem ixpeq2dva

Description: Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016)

Ref Expression
Hypothesis ixpeq2dva.1 φ x A B = C
Assertion ixpeq2dva φ x A B = x A C

Proof

Step Hyp Ref Expression
1 ixpeq2dva.1 φ x A B = C
2 1 ralrimiva φ x A B = C
3 ixpeq2 x A B = C x A B = x A C
4 2 3 syl φ x A B = x A C