Metamath Proof Explorer


Theorem ixpexg

Description: The existence of an infinite Cartesian product. x is normally a free-variable parameter in B . Remark in Enderton p. 54. (Contributed by NM, 28-Sep-2006) (Revised by Mario Carneiro, 25-Jan-2015)

Ref Expression
Assertion ixpexg x A B V x A B V

Proof

Step Hyp Ref Expression
1 uniixp x A B A × x A B
2 iunexg A V x A B V x A B V
3 xpexg A V x A B V A × x A B V
4 2 3 syldan A V x A B V A × x A B V
5 ssexg x A B A × x A B A × x A B V x A B V
6 1 4 5 sylancr A V x A B V x A B V
7 uniexb x A B V x A B V
8 6 7 sylibr A V x A B V x A B V
9 ixpprc ¬ A V x A B =
10 0ex V
11 9 10 eqeltrdi ¬ A V x A B V
12 11 adantr ¬ A V x A B V x A B V
13 8 12 pm2.61ian x A B V x A B V