Metamath Proof Explorer


Theorem ixpf

Description: A member of an infinite Cartesian product maps to the indexed union of the product argument. Remark in Enderton p. 54. (Contributed by NM, 28-Sep-2006)

Ref Expression
Assertion ixpf F x A B F : A x A B

Proof

Step Hyp Ref Expression
1 elixp2 F x A B F V F Fn A x A F x B
2 ssiun2 x A B x A B
3 2 sseld x A F x B F x x A B
4 3 ralimia x A F x B x A F x x A B
5 4 anim2i F Fn A x A F x B F Fn A x A F x x A B
6 nfcv _ x A
7 nfiu1 _ x x A B
8 nfcv _ x F
9 6 7 8 ffnfvf F : A x A B F Fn A x A F x x A B
10 5 9 sylibr F Fn A x A F x B F : A x A B
11 10 3adant1 F V F Fn A x A F x B F : A x A B
12 1 11 sylbi F x A B F : A x A B