Metamath Proof Explorer


Theorem ixpfi2

Description: A Cartesian product of finite sets such that all but finitely many are singletons is finite. (Note that B ( x ) and D ( x ) are both possibly dependent on x .) (Contributed by Mario Carneiro, 25-Jan-2015)

Ref Expression
Hypotheses ixpfi2.1 φ C Fin
ixpfi2.2 φ x A B Fin
ixpfi2.3 φ x A C B D
Assertion ixpfi2 φ x A B Fin

Proof

Step Hyp Ref Expression
1 ixpfi2.1 φ C Fin
2 ixpfi2.2 φ x A B Fin
3 ixpfi2.3 φ x A C B D
4 inss2 A C C
5 ssfi C Fin A C C A C Fin
6 1 4 5 sylancl φ A C Fin
7 inss1 A C A
8 2 ralrimiva φ x A B Fin
9 ssralv A C A x A B Fin x A C B Fin
10 7 8 9 mpsyl φ x A C B Fin
11 ixpfi A C Fin x A C B Fin x A C B Fin
12 6 10 11 syl2anc φ x A C B Fin
13 resixp A C A f x A B f A C x A C B
14 7 13 mpan f x A B f A C x A C B
15 14 a1i φ f x A B f A C x A C B
16 simprl φ f x A B g x A B f x A B
17 vex f V
18 17 elixp f x A B f Fn A x A f x B
19 16 18 sylib φ f x A B g x A B f Fn A x A f x B
20 19 simprd φ f x A B g x A B x A f x B
21 simprr φ f x A B g x A B g x A B
22 vex g V
23 22 elixp g x A B g Fn A x A g x B
24 21 23 sylib φ f x A B g x A B g Fn A x A g x B
25 24 simprd φ f x A B g x A B x A g x B
26 r19.26 x A f x B g x B x A f x B x A g x B
27 difss A C A
28 ssralv A C A x A f x B g x B x A C f x B g x B
29 27 28 ax-mp x A f x B g x B x A C f x B g x B
30 3 sseld φ x A C f x B f x D
31 elsni f x D f x = D
32 30 31 syl6 φ x A C f x B f x = D
33 3 sseld φ x A C g x B g x D
34 elsni g x D g x = D
35 33 34 syl6 φ x A C g x B g x = D
36 32 35 anim12d φ x A C f x B g x B f x = D g x = D
37 eqtr3 f x = D g x = D f x = g x
38 36 37 syl6 φ x A C f x B g x B f x = g x
39 38 ralimdva φ x A C f x B g x B x A C f x = g x
40 39 adantr φ f x A B g x A B x A C f x B g x B x A C f x = g x
41 29 40 syl5 φ f x A B g x A B x A f x B g x B x A C f x = g x
42 26 41 syl5bir φ f x A B g x A B x A f x B x A g x B x A C f x = g x
43 20 25 42 mp2and φ f x A B g x A B x A C f x = g x
44 43 biantrud φ f x A B g x A B x A C f x = g x x A C f x = g x x A C f x = g x
45 fvres x A C f A C x = f x
46 fvres x A C g A C x = g x
47 45 46 eqeq12d x A C f A C x = g A C x f x = g x
48 47 ralbiia x A C f A C x = g A C x x A C f x = g x
49 inundif A C A C = A
50 49 raleqi x A C A C f x = g x x A f x = g x
51 ralunb x A C A C f x = g x x A C f x = g x x A C f x = g x
52 50 51 bitr3i x A f x = g x x A C f x = g x x A C f x = g x
53 44 48 52 3bitr4g φ f x A B g x A B x A C f A C x = g A C x x A f x = g x
54 19 simpld φ f x A B g x A B f Fn A
55 fnssres f Fn A A C A f A C Fn A C
56 54 7 55 sylancl φ f x A B g x A B f A C Fn A C
57 24 simpld φ f x A B g x A B g Fn A
58 fnssres g Fn A A C A g A C Fn A C
59 57 7 58 sylancl φ f x A B g x A B g A C Fn A C
60 eqfnfv f A C Fn A C g A C Fn A C f A C = g A C x A C f A C x = g A C x
61 56 59 60 syl2anc φ f x A B g x A B f A C = g A C x A C f A C x = g A C x
62 eqfnfv f Fn A g Fn A f = g x A f x = g x
63 54 57 62 syl2anc φ f x A B g x A B f = g x A f x = g x
64 53 61 63 3bitr4d φ f x A B g x A B f A C = g A C f = g
65 64 ex φ f x A B g x A B f A C = g A C f = g
66 15 65 dom2lem φ f x A B f A C : x A B 1-1 x A C B
67 f1fi x A C B Fin f x A B f A C : x A B 1-1 x A C B x A B Fin
68 12 66 67 syl2anc φ x A B Fin