Metamath Proof Explorer


Theorem ixpint

Description: The intersection of a collection of infinite Cartesian products. (Contributed by Mario Carneiro, 3-Feb-2015)

Ref Expression
Assertion ixpint B x A B = y B x A y

Proof

Step Hyp Ref Expression
1 ixpeq2 x A B = y B y x A B = x A y B y
2 intiin B = y B y
3 2 a1i x A B = y B y
4 1 3 mprg x A B = x A y B y
5 ixpiin B x A y B y = y B x A y
6 4 5 eqtrid B x A B = y B x A y