Metamath Proof Explorer


Theorem ixpiunwdom

Description: Describe an onto function from the indexed cartesian product to the indexed union. Together with ixpssmapg this shows that U_ x e. A B and X_ x e. A B have closely linked cardinalities. (Contributed by Mario Carneiro, 27-Aug-2015)

Ref Expression
Assertion ixpiunwdom A V x A B W x A B x A B * x A B × A

Proof

Step Hyp Ref Expression
1 vex f V
2 1 elixp f x A B f Fn A x A f x B
3 2 simprbi f x A B x A f x B
4 ssiun2 x A B x A B
5 4 sseld x A f x B f x x A B
6 5 ralimia x A f x B x A f x x A B
7 3 6 syl f x A B x A f x x A B
8 nfv y f x x A B
9 nfiu1 _ x x A B
10 9 nfel2 x f y x A B
11 fveq2 x = y f x = f y
12 11 eleq1d x = y f x x A B f y x A B
13 8 10 12 cbvralw x A f x x A B y A f y x A B
14 7 13 sylib f x A B y A f y x A B
15 14 adantl A V x A B W x A B f x A B y A f y x A B
16 15 ralrimiva A V x A B W x A B f x A B y A f y x A B
17 eqid f x A B , y A f y = f x A B , y A f y
18 17 fmpo f x A B y A f y x A B f x A B , y A f y : x A B × A x A B
19 16 18 sylib A V x A B W x A B f x A B , y A f y : x A B × A x A B
20 ixpssmap2g x A B W x A B x A B A
21 20 3ad2ant2 A V x A B W x A B x A B x A B A
22 ovex x A B A V
23 22 ssex x A B x A B A x A B V
24 21 23 syl A V x A B W x A B x A B V
25 simp1 A V x A B W x A B A V
26 24 25 xpexd A V x A B W x A B x A B × A V
27 19 26 fexd A V x A B W x A B f x A B , y A f y V
28 19 ffnd A V x A B W x A B f x A B , y A f y Fn x A B × A
29 dffn4 f x A B , y A f y Fn x A B × A f x A B , y A f y : x A B × A onto ran f x A B , y A f y
30 28 29 sylib A V x A B W x A B f x A B , y A f y : x A B × A onto ran f x A B , y A f y
31 n0 x A B g g x A B
32 eliun z x A B x A z B
33 nfixp1 _ x x A B
34 33 nfel2 x g x A B
35 nfv x y A z = f y
36 33 35 nfrex x f x A B y A z = f y
37 simplrr g x A B x A z B k A z B
38 iftrue k = x if k = x z g k = z
39 csbeq1a x = k B = k / x B
40 39 equcoms k = x B = k / x B
41 40 eqcomd k = x k / x B = B
42 38 41 eleq12d k = x if k = x z g k k / x B z B
43 37 42 syl5ibrcom g x A B x A z B k A k = x if k = x z g k k / x B
44 vex g V
45 44 elixp g x A B g Fn A x A g x B
46 45 simprbi g x A B x A g x B
47 46 adantr g x A B x A z B x A g x B
48 nfv k g x B
49 nfcsb1v _ x k / x B
50 49 nfel2 x g k k / x B
51 fveq2 x = k g x = g k
52 51 39 eleq12d x = k g x B g k k / x B
53 48 50 52 cbvralw x A g x B k A g k k / x B
54 47 53 sylib g x A B x A z B k A g k k / x B
55 54 r19.21bi g x A B x A z B k A g k k / x B
56 iffalse ¬ k = x if k = x z g k = g k
57 56 eleq1d ¬ k = x if k = x z g k k / x B g k k / x B
58 55 57 syl5ibrcom g x A B x A z B k A ¬ k = x if k = x z g k k / x B
59 43 58 pm2.61d g x A B x A z B k A if k = x z g k k / x B
60 59 ralrimiva g x A B x A z B k A if k = x z g k k / x B
61 ixpfn g x A B g Fn A
62 61 adantr g x A B x A z B g Fn A
63 62 fndmd g x A B x A z B dom g = A
64 44 dmex dom g V
65 63 64 eqeltrrdi g x A B x A z B A V
66 mptelixpg A V k A if k = x z g k k A k / x B k A if k = x z g k k / x B
67 65 66 syl g x A B x A z B k A if k = x z g k k A k / x B k A if k = x z g k k / x B
68 60 67 mpbird g x A B x A z B k A if k = x z g k k A k / x B
69 nfcv _ k B
70 69 49 39 cbvixp x A B = k A k / x B
71 68 70 eleqtrrdi g x A B x A z B k A if k = x z g k x A B
72 simprl g x A B x A z B x A
73 eqid k A if k = x z g k = k A if k = x z g k
74 vex z V
75 38 73 74 fvmpt x A k A if k = x z g k x = z
76 75 ad2antrl g x A B x A z B k A if k = x z g k x = z
77 76 eqcomd g x A B x A z B z = k A if k = x z g k x
78 fveq1 f = k A if k = x z g k f y = k A if k = x z g k y
79 78 eqeq2d f = k A if k = x z g k z = f y z = k A if k = x z g k y
80 fveq2 y = x k A if k = x z g k y = k A if k = x z g k x
81 80 eqeq2d y = x z = k A if k = x z g k y z = k A if k = x z g k x
82 79 81 rspc2ev k A if k = x z g k x A B x A z = k A if k = x z g k x f x A B y A z = f y
83 71 72 77 82 syl3anc g x A B x A z B f x A B y A z = f y
84 83 exp32 g x A B x A z B f x A B y A z = f y
85 34 36 84 rexlimd g x A B x A z B f x A B y A z = f y
86 32 85 syl5bi g x A B z x A B f x A B y A z = f y
87 86 exlimiv g g x A B z x A B f x A B y A z = f y
88 31 87 sylbi x A B z x A B f x A B y A z = f y
89 88 3ad2ant3 A V x A B W x A B z x A B f x A B y A z = f y
90 89 alrimiv A V x A B W x A B z z x A B f x A B y A z = f y
91 ssab x A B z | f x A B y A z = f y z z x A B f x A B y A z = f y
92 90 91 sylibr A V x A B W x A B x A B z | f x A B y A z = f y
93 17 rnmpo ran f x A B , y A f y = z | f x A B y A z = f y
94 92 93 sseqtrrdi A V x A B W x A B x A B ran f x A B , y A f y
95 19 frnd A V x A B W x A B ran f x A B , y A f y x A B
96 94 95 eqssd A V x A B W x A B x A B = ran f x A B , y A f y
97 foeq3 x A B = ran f x A B , y A f y f x A B , y A f y : x A B × A onto x A B f x A B , y A f y : x A B × A onto ran f x A B , y A f y
98 96 97 syl A V x A B W x A B f x A B , y A f y : x A B × A onto x A B f x A B , y A f y : x A B × A onto ran f x A B , y A f y
99 30 98 mpbird A V x A B W x A B f x A B , y A f y : x A B × A onto x A B
100 fowdom f x A B , y A f y V f x A B , y A f y : x A B × A onto x A B x A B * x A B × A
101 27 99 100 syl2anc A V x A B W x A B x A B * x A B × A