Metamath Proof Explorer


Theorem ixpsnbasval

Description: The value of an infinite Cartesian product of the base of a left module over a ring with a singleton. (Contributed by AV, 3-Dec-2018)

Ref Expression
Assertion ixpsnbasval R V X W x X Base X × ringLMod R x = f | f Fn X f X Base R

Proof

Step Hyp Ref Expression
1 ixpsnval X W x X Base X × ringLMod R x = f | f Fn X f X X / x Base X × ringLMod R x
2 1 adantl R V X W x X Base X × ringLMod R x = f | f Fn X f X X / x Base X × ringLMod R x
3 csbfv2g X W X / x Base X × ringLMod R x = Base X / x X × ringLMod R x
4 csbfv2g X W X / x X × ringLMod R x = X × ringLMod R X / x x
5 csbvarg X W X / x x = X
6 5 fveq2d X W X × ringLMod R X / x x = X × ringLMod R X
7 4 6 eqtrd X W X / x X × ringLMod R x = X × ringLMod R X
8 7 fveq2d X W Base X / x X × ringLMod R x = Base X × ringLMod R X
9 3 8 eqtrd X W X / x Base X × ringLMod R x = Base X × ringLMod R X
10 9 adantl R V X W X / x Base X × ringLMod R x = Base X × ringLMod R X
11 fvexd R V ringLMod R V
12 11 anim1ci R V X W X W ringLMod R V
13 xpsng X W ringLMod R V X × ringLMod R = X ringLMod R
14 12 13 syl R V X W X × ringLMod R = X ringLMod R
15 14 fveq1d R V X W X × ringLMod R X = X ringLMod R X
16 fvsng X W ringLMod R V X ringLMod R X = ringLMod R
17 12 16 syl R V X W X ringLMod R X = ringLMod R
18 15 17 eqtrd R V X W X × ringLMod R X = ringLMod R
19 18 fveq2d R V X W Base X × ringLMod R X = Base ringLMod R
20 10 19 eqtrd R V X W X / x Base X × ringLMod R x = Base ringLMod R
21 rlmbas Base R = Base ringLMod R
22 20 21 eqtr4di R V X W X / x Base X × ringLMod R x = Base R
23 22 eleq2d R V X W f X X / x Base X × ringLMod R x f X Base R
24 23 anbi2d R V X W f Fn X f X X / x Base X × ringLMod R x f Fn X f X Base R
25 24 abbidv R V X W f | f Fn X f X X / x Base X × ringLMod R x = f | f Fn X f X Base R
26 2 25 eqtrd R V X W x X Base X × ringLMod R x = f | f Fn X f X Base R