Step |
Hyp |
Ref |
Expression |
1 |
|
ixpsnf1o.f |
|
2 |
|
snex |
|
3 |
|
snex |
|
4 |
2 3
|
xpex |
|
5 |
4
|
a1i |
|
6 |
|
vex |
|
7 |
6
|
rnex |
|
8 |
7
|
uniex |
|
9 |
8
|
a1i |
|
10 |
|
sneq |
|
11 |
10
|
xpeq1d |
|
12 |
11
|
eqeq2d |
|
13 |
12
|
anbi2d |
|
14 |
|
elixpsn |
|
15 |
14
|
elv |
|
16 |
10
|
ixpeq1d |
|
17 |
16
|
eleq2d |
|
18 |
15 17
|
bitr3id |
|
19 |
18
|
anbi1d |
|
20 |
|
vex |
|
21 |
|
vex |
|
22 |
20 21
|
xpsn |
|
23 |
22
|
eqeq2i |
|
24 |
23
|
anbi2i |
|
25 |
|
eqid |
|
26 |
|
opeq2 |
|
27 |
26
|
sneqd |
|
28 |
27
|
rspceeqv |
|
29 |
25 28
|
mpan2 |
|
30 |
20 21
|
op2nda |
|
31 |
30
|
eqcomi |
|
32 |
29 31
|
jctir |
|
33 |
|
eqeq1 |
|
34 |
33
|
rexbidv |
|
35 |
|
rneq |
|
36 |
35
|
unieqd |
|
37 |
36
|
eqeq2d |
|
38 |
34 37
|
anbi12d |
|
39 |
32 38
|
syl5ibrcom |
|
40 |
39
|
imp |
|
41 |
|
vex |
|
42 |
20 41
|
op2nda |
|
43 |
42
|
eqeq2i |
|
44 |
|
eqidd |
|
45 |
44
|
ancli |
|
46 |
|
eleq1w |
|
47 |
|
opeq2 |
|
48 |
47
|
sneqd |
|
49 |
48
|
eqeq2d |
|
50 |
46 49
|
anbi12d |
|
51 |
45 50
|
syl5ibrcom |
|
52 |
43 51
|
syl5bi |
|
53 |
|
rneq |
|
54 |
53
|
unieqd |
|
55 |
54
|
eqeq2d |
|
56 |
|
eqeq1 |
|
57 |
56
|
anbi2d |
|
58 |
55 57
|
imbi12d |
|
59 |
52 58
|
syl5ibrcom |
|
60 |
59
|
rexlimiv |
|
61 |
60
|
imp |
|
62 |
40 61
|
impbii |
|
63 |
24 62
|
bitri |
|
64 |
13 19 63
|
vtoclbg |
|
65 |
1 5 9 64
|
f1od |
|