Metamath Proof Explorer


Theorem ixpsnval

Description: The value of an infinite Cartesian product with a singleton. (Contributed by AV, 3-Dec-2018)

Ref Expression
Assertion ixpsnval X V x X B = f | f Fn X f X X / x B

Proof

Step Hyp Ref Expression
1 dfixp x X B = f | f Fn X x X f x B
2 ralsnsg X V x X f x B [˙X / x]˙ f x B
3 sbcel12 [˙X / x]˙ f x B X / x f x X / x B
4 csbfv2g X V X / x f x = f X / x x
5 csbvarg X V X / x x = X
6 5 fveq2d X V f X / x x = f X
7 4 6 eqtrd X V X / x f x = f X
8 7 eleq1d X V X / x f x X / x B f X X / x B
9 3 8 bitrid X V [˙X / x]˙ f x B f X X / x B
10 2 9 bitrd X V x X f x B f X X / x B
11 10 anbi2d X V f Fn X x X f x B f Fn X f X X / x B
12 11 abbidv X V f | f Fn X x X f x B = f | f Fn X f X X / x B
13 1 12 eqtrid X V x X B = f | f Fn X f X X / x B