Metamath Proof Explorer


Theorem ixpssixp

Description: Subclass theorem for infinite Cartesian product. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses ixpssixp.1 x φ
ixpssixp.2 φ x A B C
Assertion ixpssixp φ x A B x A C

Proof

Step Hyp Ref Expression
1 ixpssixp.1 x φ
2 ixpssixp.2 φ x A B C
3 2 ex φ x A B C
4 1 3 ralrimi φ x A B C
5 ss2ixp x A B C x A B x A C
6 4 5 syl φ x A B x A C