Metamath Proof Explorer


Theorem ixpssmap2g

Description: An infinite Cartesian product is a subset of set exponentiation. This version of ixpssmapg avoids ax-rep . (Contributed by Mario Carneiro, 16-Nov-2014)

Ref Expression
Assertion ixpssmap2g x A B V x A B x A B A

Proof

Step Hyp Ref Expression
1 ixpf f x A B f : A x A B
2 1 adantl x A B V f x A B f : A x A B
3 n0i f x A B ¬ x A B =
4 ixpprc ¬ A V x A B =
5 3 4 nsyl2 f x A B A V
6 elmapg x A B V A V f x A B A f : A x A B
7 5 6 sylan2 x A B V f x A B f x A B A f : A x A B
8 2 7 mpbird x A B V f x A B f x A B A
9 8 ex x A B V f x A B f x A B A
10 9 ssrdv x A B V x A B x A B A