Metamath Proof Explorer


Theorem ixpssmapg

Description: An infinite Cartesian product is a subset of set exponentiation. (Contributed by Jeff Madsen, 19-Jun-2011)

Ref Expression
Assertion ixpssmapg x A B V x A B x A B A

Proof

Step Hyp Ref Expression
1 n0i f x A B ¬ x A B =
2 ixpprc ¬ A V x A B =
3 1 2 nsyl2 f x A B A V
4 id x A B V x A B V
5 iunexg A V x A B V x A B V
6 3 4 5 syl2anr x A B V f x A B x A B V
7 ixpssmap2g x A B V x A B x A B A
8 6 7 syl x A B V f x A B x A B x A B A
9 simpr x A B V f x A B f x A B
10 8 9 sseldd x A B V f x A B f x A B A
11 10 ex x A B V f x A B f x A B A
12 11 ssrdv x A B V x A B x A B A