Metamath Proof Explorer


Theorem ixxdisj

Description: Split an interval into disjoint pieces. (Contributed by Mario Carneiro, 16-Jun-2014)

Ref Expression
Hypotheses ixx.1 O = x * , y * z * | x R z z S y
ixxun.2 P = x * , y * z * | x T z z U y
ixxun.3 B * w * B T w ¬ w S B
Assertion ixxdisj A * B * C * A O B B P C =

Proof

Step Hyp Ref Expression
1 ixx.1 O = x * , y * z * | x R z z S y
2 ixxun.2 P = x * , y * z * | x T z z U y
3 ixxun.3 B * w * B T w ¬ w S B
4 elin w A O B B P C w A O B w B P C
5 1 elixx1 A * B * w A O B w * A R w w S B
6 5 3adant3 A * B * C * w A O B w * A R w w S B
7 6 biimpa A * B * C * w A O B w * A R w w S B
8 7 simp3d A * B * C * w A O B w S B
9 8 adantrr A * B * C * w A O B w B P C w S B
10 2 elixx1 B * C * w B P C w * B T w w U C
11 10 3adant1 A * B * C * w B P C w * B T w w U C
12 11 biimpa A * B * C * w B P C w * B T w w U C
13 12 simp2d A * B * C * w B P C B T w
14 simpl2 A * B * C * w B P C B *
15 12 simp1d A * B * C * w B P C w *
16 14 15 3 syl2anc A * B * C * w B P C B T w ¬ w S B
17 13 16 mpbid A * B * C * w B P C ¬ w S B
18 17 adantrl A * B * C * w A O B w B P C ¬ w S B
19 9 18 pm2.65da A * B * C * ¬ w A O B w B P C
20 19 pm2.21d A * B * C * w A O B w B P C w
21 4 20 syl5bi A * B * C * w A O B B P C w
22 21 ssrdv A * B * C * A O B B P C
23 ss0 A O B B P C A O B B P C =
24 22 23 syl A * B * C * A O B B P C =