Metamath Proof Explorer


Theorem ixxex

Description: The set of intervals of extended reals exists. (Contributed by Mario Carneiro, 3-Nov-2013) (Revised by Mario Carneiro, 17-Nov-2014)

Ref Expression
Hypothesis ixx.1 O = x * , y * z * | x R z z S y
Assertion ixxex O V

Proof

Step Hyp Ref Expression
1 ixx.1 O = x * , y * z * | x R z z S y
2 xrex * V
3 2 2 xpex * × * V
4 2 pwex 𝒫 * V
5 3 4 xpex * × * × 𝒫 * V
6 1 ixxf O : * × * 𝒫 *
7 fssxp O : * × * 𝒫 * O * × * × 𝒫 *
8 6 7 ax-mp O * × * × 𝒫 *
9 5 8 ssexi O V