Metamath Proof Explorer


Theorem ixxf

Description: The set of intervals of extended reals maps to subsets of extended reals. (Contributed by FL, 14-Jun-2007) (Revised by Mario Carneiro, 16-Nov-2013)

Ref Expression
Hypothesis ixx.1 O = x * , y * z * | x R z z S y
Assertion ixxf O : * × * 𝒫 *

Proof

Step Hyp Ref Expression
1 ixx.1 O = x * , y * z * | x R z z S y
2 xrex * V
3 ssrab2 z * | x R z z S y *
4 2 3 elpwi2 z * | x R z z S y 𝒫 *
5 4 rgen2w x * y * z * | x R z z S y 𝒫 *
6 1 fmpo x * y * z * | x R z z S y 𝒫 * O : * × * 𝒫 *
7 5 6 mpbi O : * × * 𝒫 *