Metamath Proof Explorer


Theorem ixxin

Description: Intersection of two intervals of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013)

Ref Expression
Hypotheses ixx.1 O = x * , y * z * | x R z z S y
ixxin.2 A * C * z * if A C C A R z A R z C R z
ixxin.3 z * B * D * z S if B D B D z S B z S D
Assertion ixxin A * B * C * D * A O B C O D = if A C C A O if B D B D

Proof

Step Hyp Ref Expression
1 ixx.1 O = x * , y * z * | x R z z S y
2 ixxin.2 A * C * z * if A C C A R z A R z C R z
3 ixxin.3 z * B * D * z S if B D B D z S B z S D
4 inrab z * | A R z z S B z * | C R z z S D = z * | A R z z S B C R z z S D
5 1 ixxval A * B * A O B = z * | A R z z S B
6 1 ixxval C * D * C O D = z * | C R z z S D
7 5 6 ineqan12d A * B * C * D * A O B C O D = z * | A R z z S B z * | C R z z S D
8 2 ad4ant124 A * C * B * D * z * if A C C A R z A R z C R z
9 3 3expb z * B * D * z S if B D B D z S B z S D
10 9 ancoms B * D * z * z S if B D B D z S B z S D
11 10 adantll A * C * B * D * z * z S if B D B D z S B z S D
12 8 11 anbi12d A * C * B * D * z * if A C C A R z z S if B D B D A R z C R z z S B z S D
13 an4 A R z z S B C R z z S D A R z C R z z S B z S D
14 12 13 bitr4di A * C * B * D * z * if A C C A R z z S if B D B D A R z z S B C R z z S D
15 14 rabbidva A * C * B * D * z * | if A C C A R z z S if B D B D = z * | A R z z S B C R z z S D
16 15 an4s A * B * C * D * z * | if A C C A R z z S if B D B D = z * | A R z z S B C R z z S D
17 4 7 16 3eqtr4a A * B * C * D * A O B C O D = z * | if A C C A R z z S if B D B D
18 ifcl C * A * if A C C A *
19 18 ancoms A * C * if A C C A *
20 ifcl B * D * if B D B D *
21 1 ixxval if A C C A * if B D B D * if A C C A O if B D B D = z * | if A C C A R z z S if B D B D
22 19 20 21 syl2an A * C * B * D * if A C C A O if B D B D = z * | if A C C A R z z S if B D B D
23 22 an4s A * B * C * D * if A C C A O if B D B D = z * | if A C C A R z z S if B D B D
24 17 23 eqtr4d A * B * C * D * A O B C O D = if A C C A O if B D B D