Step |
Hyp |
Ref |
Expression |
1 |
|
ixx.1 |
|
2 |
|
ixxub.2 |
|
3 |
|
ixxub.3 |
|
4 |
|
ixxub.4 |
|
5 |
|
ixxub.5 |
|
6 |
1
|
elixx1 |
|
7 |
6
|
3adant3 |
|
8 |
7
|
biimpa |
|
9 |
8
|
simp1d |
|
10 |
9
|
ex |
|
11 |
10
|
ssrdv |
|
12 |
|
infxrcl |
|
13 |
11 12
|
syl |
|
14 |
|
simp1 |
|
15 |
|
simprr |
|
16 |
11
|
ad2antrr |
|
17 |
|
qre |
|
18 |
17
|
rexrd |
|
19 |
18
|
ad2antlr |
|
20 |
|
simprl |
|
21 |
14
|
ad2antrr |
|
22 |
21 19 4
|
syl2anc |
|
23 |
20 22
|
mpd |
|
24 |
13
|
ad2antrr |
|
25 |
|
simpll2 |
|
26 |
|
simp3 |
|
27 |
|
n0 |
|
28 |
26 27
|
sylib |
|
29 |
13
|
adantr |
|
30 |
|
simpl2 |
|
31 |
|
infxrlb |
|
32 |
11 31
|
sylan |
|
33 |
8
|
simp3d |
|
34 |
9 30 3
|
syl2anc |
|
35 |
33 34
|
mpd |
|
36 |
29 9 30 32 35
|
xrletrd |
|
37 |
28 36
|
exlimddv |
|
38 |
37
|
ad2antrr |
|
39 |
19 24 25 15 38
|
xrltletrd |
|
40 |
19 25 2
|
syl2anc |
|
41 |
39 40
|
mpd |
|
42 |
7
|
ad2antrr |
|
43 |
19 23 41 42
|
mpbir3and |
|
44 |
16 43 31
|
syl2anc |
|
45 |
24 19
|
xrlenltd |
|
46 |
44 45
|
mpbid |
|
47 |
15 46
|
pm2.65da |
|
48 |
47
|
nrexdv |
|
49 |
|
qbtwnxr |
|
50 |
49
|
3expia |
|
51 |
14 13 50
|
syl2anc |
|
52 |
48 51
|
mtod |
|
53 |
13 14 52
|
xrnltled |
|
54 |
8
|
simp2d |
|
55 |
14
|
adantr |
|
56 |
55 9 5
|
syl2anc |
|
57 |
54 56
|
mpd |
|
58 |
57
|
ralrimiva |
|
59 |
|
infxrgelb |
|
60 |
11 14 59
|
syl2anc |
|
61 |
58 60
|
mpbird |
|
62 |
13 14 53 61
|
xrletrid |
|