Metamath Proof Explorer


Theorem ixxss12

Description: Subset relationship for intervals of extended reals. (Contributed by Mario Carneiro, 20-Feb-2015) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Hypotheses ixx.1 O = x * , y * z * | x R z z S y
ixxss12.2 P = x * , y * z * | x T z z U y
ixxss12.3 A * C * w * A W C C T w A R w
ixxss12.4 w * D * B * w U D D X B w S B
Assertion ixxss12 A * B * A W C D X B C P D A O B

Proof

Step Hyp Ref Expression
1 ixx.1 O = x * , y * z * | x R z z S y
2 ixxss12.2 P = x * , y * z * | x T z z U y
3 ixxss12.3 A * C * w * A W C C T w A R w
4 ixxss12.4 w * D * B * w U D D X B w S B
5 2 elixx3g w C P D C * D * w * C T w w U D
6 5 simplbi w C P D C * D * w *
7 6 adantl A * B * A W C D X B w C P D C * D * w *
8 7 simp3d A * B * A W C D X B w C P D w *
9 simplrl A * B * A W C D X B w C P D A W C
10 5 simprbi w C P D C T w w U D
11 10 adantl A * B * A W C D X B w C P D C T w w U D
12 11 simpld A * B * A W C D X B w C P D C T w
13 simplll A * B * A W C D X B w C P D A *
14 7 simp1d A * B * A W C D X B w C P D C *
15 13 14 8 3 syl3anc A * B * A W C D X B w C P D A W C C T w A R w
16 9 12 15 mp2and A * B * A W C D X B w C P D A R w
17 11 simprd A * B * A W C D X B w C P D w U D
18 simplrr A * B * A W C D X B w C P D D X B
19 7 simp2d A * B * A W C D X B w C P D D *
20 simpllr A * B * A W C D X B w C P D B *
21 8 19 20 4 syl3anc A * B * A W C D X B w C P D w U D D X B w S B
22 17 18 21 mp2and A * B * A W C D X B w C P D w S B
23 1 elixx1 A * B * w A O B w * A R w w S B
24 23 ad2antrr A * B * A W C D X B w C P D w A O B w * A R w w S B
25 8 16 22 24 mpbir3and A * B * A W C D X B w C P D w A O B
26 25 ex A * B * A W C D X B w C P D w A O B
27 26 ssrdv A * B * A W C D X B C P D A O B