Metamath Proof Explorer


Theorem ixxss2

Description: Subset relationship for intervals of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Hypotheses ixx.1 O = x * , y * z * | x R z z S y
ixxss2.2 P = x * , y * z * | x R z z T y
ixxss2.3 w * B * C * w T B B W C w S C
Assertion ixxss2 C * B W C A P B A O C

Proof

Step Hyp Ref Expression
1 ixx.1 O = x * , y * z * | x R z z S y
2 ixxss2.2 P = x * , y * z * | x R z z T y
3 ixxss2.3 w * B * C * w T B B W C w S C
4 2 elixx3g w A P B A * B * w * A R w w T B
5 4 simplbi w A P B A * B * w *
6 5 adantl C * B W C w A P B A * B * w *
7 6 simp3d C * B W C w A P B w *
8 4 simprbi w A P B A R w w T B
9 8 adantl C * B W C w A P B A R w w T B
10 9 simpld C * B W C w A P B A R w
11 9 simprd C * B W C w A P B w T B
12 simplr C * B W C w A P B B W C
13 6 simp2d C * B W C w A P B B *
14 simpll C * B W C w A P B C *
15 7 13 14 3 syl3anc C * B W C w A P B w T B B W C w S C
16 11 12 15 mp2and C * B W C w A P B w S C
17 6 simp1d C * B W C w A P B A *
18 1 elixx1 A * C * w A O C w * A R w w S C
19 17 14 18 syl2anc C * B W C w A P B w A O C w * A R w w S C
20 7 10 16 19 mpbir3and C * B W C w A P B w A O C
21 20 ex C * B W C w A P B w A O C
22 21 ssrdv C * B W C A P B A O C