Metamath Proof Explorer


Theorem ixxssxr

Description: The set of intervals of extended reals maps to subsets of extended reals. (Contributed by Mario Carneiro, 4-Jul-2014)

Ref Expression
Hypothesis ixx.1 O = x * , y * z * | x R z z S y
Assertion ixxssxr A O B *

Proof

Step Hyp Ref Expression
1 ixx.1 O = x * , y * z * | x R z z S y
2 df-ov A O B = O A B
3 1 ixxf O : * × * 𝒫 *
4 0elpw 𝒫 *
5 3 4 f0cli O A B 𝒫 *
6 2 5 eqeltri A O B 𝒫 *
7 ovex A O B V
8 7 elpw A O B 𝒫 * A O B *
9 6 8 mpbi A O B *