Metamath Proof Explorer


Theorem ixxub

Description: Extract the upper bound of an interval. (Contributed by Mario Carneiro, 17-Jun-2014)

Ref Expression
Hypotheses ixx.1 O = x * , y * z * | x R z z S y
ixxub.2 w * B * w < B w S B
ixxub.3 w * B * w S B w B
ixxub.4 A * w * A < w A R w
ixxub.5 A * w * A R w A w
Assertion ixxub A * B * A O B sup A O B * < = B

Proof

Step Hyp Ref Expression
1 ixx.1 O = x * , y * z * | x R z z S y
2 ixxub.2 w * B * w < B w S B
3 ixxub.3 w * B * w S B w B
4 ixxub.4 A * w * A < w A R w
5 ixxub.5 A * w * A R w A w
6 1 elixx1 A * B * w A O B w * A R w w S B
7 6 3adant3 A * B * A O B w A O B w * A R w w S B
8 7 biimpa A * B * A O B w A O B w * A R w w S B
9 8 simp1d A * B * A O B w A O B w *
10 9 ex A * B * A O B w A O B w *
11 10 ssrdv A * B * A O B A O B *
12 supxrcl A O B * sup A O B * < *
13 11 12 syl A * B * A O B sup A O B * < *
14 simp2 A * B * A O B B *
15 8 simp3d A * B * A O B w A O B w S B
16 14 adantr A * B * A O B w A O B B *
17 9 16 3 syl2anc A * B * A O B w A O B w S B w B
18 15 17 mpd A * B * A O B w A O B w B
19 18 ralrimiva A * B * A O B w A O B w B
20 supxrleub A O B * B * sup A O B * < B w A O B w B
21 11 14 20 syl2anc A * B * A O B sup A O B * < B w A O B w B
22 19 21 mpbird A * B * A O B sup A O B * < B
23 simprl A * B * A O B w sup A O B * < < w w < B sup A O B * < < w
24 11 ad2antrr A * B * A O B w sup A O B * < < w w < B A O B *
25 qre w w
26 25 rexrd w w *
27 26 ad2antlr A * B * A O B w sup A O B * < < w w < B w *
28 simp1 A * B * A O B A *
29 28 ad2antrr A * B * A O B w sup A O B * < < w w < B A *
30 13 ad2antrr A * B * A O B w sup A O B * < < w w < B sup A O B * < *
31 simp3 A * B * A O B A O B
32 n0 A O B w w A O B
33 31 32 sylib A * B * A O B w w A O B
34 28 adantr A * B * A O B w A O B A *
35 13 adantr A * B * A O B w A O B sup A O B * < *
36 8 simp2d A * B * A O B w A O B A R w
37 34 9 5 syl2anc A * B * A O B w A O B A R w A w
38 36 37 mpd A * B * A O B w A O B A w
39 supxrub A O B * w A O B w sup A O B * <
40 11 39 sylan A * B * A O B w A O B w sup A O B * <
41 34 9 35 38 40 xrletrd A * B * A O B w A O B A sup A O B * <
42 33 41 exlimddv A * B * A O B A sup A O B * <
43 42 ad2antrr A * B * A O B w sup A O B * < < w w < B A sup A O B * <
44 29 30 27 43 23 xrlelttrd A * B * A O B w sup A O B * < < w w < B A < w
45 29 27 4 syl2anc A * B * A O B w sup A O B * < < w w < B A < w A R w
46 44 45 mpd A * B * A O B w sup A O B * < < w w < B A R w
47 simprr A * B * A O B w sup A O B * < < w w < B w < B
48 14 ad2antrr A * B * A O B w sup A O B * < < w w < B B *
49 27 48 2 syl2anc A * B * A O B w sup A O B * < < w w < B w < B w S B
50 47 49 mpd A * B * A O B w sup A O B * < < w w < B w S B
51 7 ad2antrr A * B * A O B w sup A O B * < < w w < B w A O B w * A R w w S B
52 27 46 50 51 mpbir3and A * B * A O B w sup A O B * < < w w < B w A O B
53 24 52 39 syl2anc A * B * A O B w sup A O B * < < w w < B w sup A O B * <
54 27 30 xrlenltd A * B * A O B w sup A O B * < < w w < B w sup A O B * < ¬ sup A O B * < < w
55 53 54 mpbid A * B * A O B w sup A O B * < < w w < B ¬ sup A O B * < < w
56 23 55 pm2.65da A * B * A O B w ¬ sup A O B * < < w w < B
57 56 nrexdv A * B * A O B ¬ w sup A O B * < < w w < B
58 qbtwnxr sup A O B * < * B * sup A O B * < < B w sup A O B * < < w w < B
59 58 3expia sup A O B * < * B * sup A O B * < < B w sup A O B * < < w w < B
60 13 14 59 syl2anc A * B * A O B sup A O B * < < B w sup A O B * < < w w < B
61 57 60 mtod A * B * A O B ¬ sup A O B * < < B
62 14 13 61 xrnltled A * B * A O B B sup A O B * <
63 13 14 22 62 xrletrid A * B * A O B sup A O B * < = B