Step |
Hyp |
Ref |
Expression |
1 |
|
ixx.1 |
|
2 |
|
ixxub.2 |
|
3 |
|
ixxub.3 |
|
4 |
|
ixxub.4 |
|
5 |
|
ixxub.5 |
|
6 |
1
|
elixx1 |
|
7 |
6
|
3adant3 |
|
8 |
7
|
biimpa |
|
9 |
8
|
simp1d |
|
10 |
9
|
ex |
|
11 |
10
|
ssrdv |
|
12 |
|
supxrcl |
|
13 |
11 12
|
syl |
|
14 |
|
simp2 |
|
15 |
8
|
simp3d |
|
16 |
14
|
adantr |
|
17 |
9 16 3
|
syl2anc |
|
18 |
15 17
|
mpd |
|
19 |
18
|
ralrimiva |
|
20 |
|
supxrleub |
|
21 |
11 14 20
|
syl2anc |
|
22 |
19 21
|
mpbird |
|
23 |
|
simprl |
|
24 |
11
|
ad2antrr |
|
25 |
|
qre |
|
26 |
25
|
rexrd |
|
27 |
26
|
ad2antlr |
|
28 |
|
simp1 |
|
29 |
28
|
ad2antrr |
|
30 |
13
|
ad2antrr |
|
31 |
|
simp3 |
|
32 |
|
n0 |
|
33 |
31 32
|
sylib |
|
34 |
28
|
adantr |
|
35 |
13
|
adantr |
|
36 |
8
|
simp2d |
|
37 |
34 9 5
|
syl2anc |
|
38 |
36 37
|
mpd |
|
39 |
|
supxrub |
|
40 |
11 39
|
sylan |
|
41 |
34 9 35 38 40
|
xrletrd |
|
42 |
33 41
|
exlimddv |
|
43 |
42
|
ad2antrr |
|
44 |
29 30 27 43 23
|
xrlelttrd |
|
45 |
29 27 4
|
syl2anc |
|
46 |
44 45
|
mpd |
|
47 |
|
simprr |
|
48 |
14
|
ad2antrr |
|
49 |
27 48 2
|
syl2anc |
|
50 |
47 49
|
mpd |
|
51 |
7
|
ad2antrr |
|
52 |
27 46 50 51
|
mpbir3and |
|
53 |
24 52 39
|
syl2anc |
|
54 |
27 30
|
xrlenltd |
|
55 |
53 54
|
mpbid |
|
56 |
23 55
|
pm2.65da |
|
57 |
56
|
nrexdv |
|
58 |
|
qbtwnxr |
|
59 |
58
|
3expia |
|
60 |
13 14 59
|
syl2anc |
|
61 |
57 60
|
mtod |
|
62 |
14 13 61
|
xrnltled |
|
63 |
13 14 22 62
|
xrletrid |
|