| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ixx.1 |
|
| 2 |
|
ixxun.2 |
|
| 3 |
|
ixxun.3 |
|
| 4 |
|
ixxun.4 |
|
| 5 |
|
ixxun.5 |
|
| 6 |
|
ixxun.6 |
|
| 7 |
|
elun |
|
| 8 |
|
simpl1 |
|
| 9 |
|
simpl2 |
|
| 10 |
1
|
elixx1 |
|
| 11 |
8 9 10
|
syl2anc |
|
| 12 |
11
|
biimpa |
|
| 13 |
12
|
simp1d |
|
| 14 |
12
|
simp2d |
|
| 15 |
12
|
simp3d |
|
| 16 |
|
simplrr |
|
| 17 |
9
|
adantr |
|
| 18 |
|
simpl3 |
|
| 19 |
18
|
adantr |
|
| 20 |
13 17 19 5
|
syl3anc |
|
| 21 |
15 16 20
|
mp2and |
|
| 22 |
13 14 21
|
3jca |
|
| 23 |
2
|
elixx1 |
|
| 24 |
9 18 23
|
syl2anc |
|
| 25 |
24
|
biimpa |
|
| 26 |
25
|
simp1d |
|
| 27 |
|
simplrl |
|
| 28 |
25
|
simp2d |
|
| 29 |
8
|
adantr |
|
| 30 |
9
|
adantr |
|
| 31 |
29 30 26 6
|
syl3anc |
|
| 32 |
27 28 31
|
mp2and |
|
| 33 |
25
|
simp3d |
|
| 34 |
26 32 33
|
3jca |
|
| 35 |
22 34
|
jaodan |
|
| 36 |
4
|
elixx1 |
|
| 37 |
8 18 36
|
syl2anc |
|
| 38 |
37
|
biimpar |
|
| 39 |
35 38
|
syldan |
|
| 40 |
|
exmid |
|
| 41 |
37
|
biimpa |
|
| 42 |
41
|
simp1d |
|
| 43 |
41
|
simp2d |
|
| 44 |
42 43
|
jca |
|
| 45 |
|
df-3an |
|
| 46 |
11 45
|
bitrdi |
|
| 47 |
46
|
adantr |
|
| 48 |
44 47
|
mpbirand |
|
| 49 |
|
3anan12 |
|
| 50 |
24 49
|
bitrdi |
|
| 51 |
50
|
adantr |
|
| 52 |
41
|
simp3d |
|
| 53 |
42 52
|
jca |
|
| 54 |
53
|
biantrud |
|
| 55 |
9
|
adantr |
|
| 56 |
55 42 3
|
syl2anc |
|
| 57 |
51 54 56
|
3bitr2d |
|
| 58 |
48 57
|
orbi12d |
|
| 59 |
40 58
|
mpbiri |
|
| 60 |
39 59
|
impbida |
|
| 61 |
7 60
|
bitrid |
|
| 62 |
61
|
eqrdv |
|