Metamath Proof Explorer


Theorem ixxun

Description: Split an interval into two parts. (Contributed by Mario Carneiro, 16-Jun-2014)

Ref Expression
Hypotheses ixx.1 O = x * , y * z * | x R z z S y
ixxun.2 P = x * , y * z * | x T z z U y
ixxun.3 B * w * B T w ¬ w S B
ixxun.4 Q = x * , y * z * | x R z z U y
ixxun.5 w * B * C * w S B B X C w U C
ixxun.6 A * B * w * A W B B T w A R w
Assertion ixxun A * B * C * A W B B X C A O B B P C = A Q C

Proof

Step Hyp Ref Expression
1 ixx.1 O = x * , y * z * | x R z z S y
2 ixxun.2 P = x * , y * z * | x T z z U y
3 ixxun.3 B * w * B T w ¬ w S B
4 ixxun.4 Q = x * , y * z * | x R z z U y
5 ixxun.5 w * B * C * w S B B X C w U C
6 ixxun.6 A * B * w * A W B B T w A R w
7 elun w A O B B P C w A O B w B P C
8 simpl1 A * B * C * A W B B X C A *
9 simpl2 A * B * C * A W B B X C B *
10 1 elixx1 A * B * w A O B w * A R w w S B
11 8 9 10 syl2anc A * B * C * A W B B X C w A O B w * A R w w S B
12 11 biimpa A * B * C * A W B B X C w A O B w * A R w w S B
13 12 simp1d A * B * C * A W B B X C w A O B w *
14 12 simp2d A * B * C * A W B B X C w A O B A R w
15 12 simp3d A * B * C * A W B B X C w A O B w S B
16 simplrr A * B * C * A W B B X C w A O B B X C
17 9 adantr A * B * C * A W B B X C w A O B B *
18 simpl3 A * B * C * A W B B X C C *
19 18 adantr A * B * C * A W B B X C w A O B C *
20 13 17 19 5 syl3anc A * B * C * A W B B X C w A O B w S B B X C w U C
21 15 16 20 mp2and A * B * C * A W B B X C w A O B w U C
22 13 14 21 3jca A * B * C * A W B B X C w A O B w * A R w w U C
23 2 elixx1 B * C * w B P C w * B T w w U C
24 9 18 23 syl2anc A * B * C * A W B B X C w B P C w * B T w w U C
25 24 biimpa A * B * C * A W B B X C w B P C w * B T w w U C
26 25 simp1d A * B * C * A W B B X C w B P C w *
27 simplrl A * B * C * A W B B X C w B P C A W B
28 25 simp2d A * B * C * A W B B X C w B P C B T w
29 8 adantr A * B * C * A W B B X C w B P C A *
30 9 adantr A * B * C * A W B B X C w B P C B *
31 29 30 26 6 syl3anc A * B * C * A W B B X C w B P C A W B B T w A R w
32 27 28 31 mp2and A * B * C * A W B B X C w B P C A R w
33 25 simp3d A * B * C * A W B B X C w B P C w U C
34 26 32 33 3jca A * B * C * A W B B X C w B P C w * A R w w U C
35 22 34 jaodan A * B * C * A W B B X C w A O B w B P C w * A R w w U C
36 4 elixx1 A * C * w A Q C w * A R w w U C
37 8 18 36 syl2anc A * B * C * A W B B X C w A Q C w * A R w w U C
38 37 biimpar A * B * C * A W B B X C w * A R w w U C w A Q C
39 35 38 syldan A * B * C * A W B B X C w A O B w B P C w A Q C
40 exmid w S B ¬ w S B
41 37 biimpa A * B * C * A W B B X C w A Q C w * A R w w U C
42 41 simp1d A * B * C * A W B B X C w A Q C w *
43 41 simp2d A * B * C * A W B B X C w A Q C A R w
44 42 43 jca A * B * C * A W B B X C w A Q C w * A R w
45 df-3an w * A R w w S B w * A R w w S B
46 11 45 bitrdi A * B * C * A W B B X C w A O B w * A R w w S B
47 46 adantr A * B * C * A W B B X C w A Q C w A O B w * A R w w S B
48 44 47 mpbirand A * B * C * A W B B X C w A Q C w A O B w S B
49 3anan12 w * B T w w U C B T w w * w U C
50 24 49 bitrdi A * B * C * A W B B X C w B P C B T w w * w U C
51 50 adantr A * B * C * A W B B X C w A Q C w B P C B T w w * w U C
52 41 simp3d A * B * C * A W B B X C w A Q C w U C
53 42 52 jca A * B * C * A W B B X C w A Q C w * w U C
54 53 biantrud A * B * C * A W B B X C w A Q C B T w B T w w * w U C
55 9 adantr A * B * C * A W B B X C w A Q C B *
56 55 42 3 syl2anc A * B * C * A W B B X C w A Q C B T w ¬ w S B
57 51 54 56 3bitr2d A * B * C * A W B B X C w A Q C w B P C ¬ w S B
58 48 57 orbi12d A * B * C * A W B B X C w A Q C w A O B w B P C w S B ¬ w S B
59 40 58 mpbiri A * B * C * A W B B X C w A Q C w A O B w B P C
60 39 59 impbida A * B * C * A W B B X C w A O B w B P C w A Q C
61 7 60 syl5bb A * B * C * A W B B X C w A O B B P C w A Q C
62 61 eqrdv A * B * C * A W B B X C A O B B P C = A Q C