Step |
Hyp |
Ref |
Expression |
1 |
|
ixx.1 |
|
2 |
|
ixxun.2 |
|
3 |
|
ixxun.3 |
|
4 |
|
ixxun.4 |
|
5 |
|
ixxun.5 |
|
6 |
|
ixxun.6 |
|
7 |
|
elun |
|
8 |
|
simpl1 |
|
9 |
|
simpl2 |
|
10 |
1
|
elixx1 |
|
11 |
8 9 10
|
syl2anc |
|
12 |
11
|
biimpa |
|
13 |
12
|
simp1d |
|
14 |
12
|
simp2d |
|
15 |
12
|
simp3d |
|
16 |
|
simplrr |
|
17 |
9
|
adantr |
|
18 |
|
simpl3 |
|
19 |
18
|
adantr |
|
20 |
13 17 19 5
|
syl3anc |
|
21 |
15 16 20
|
mp2and |
|
22 |
13 14 21
|
3jca |
|
23 |
2
|
elixx1 |
|
24 |
9 18 23
|
syl2anc |
|
25 |
24
|
biimpa |
|
26 |
25
|
simp1d |
|
27 |
|
simplrl |
|
28 |
25
|
simp2d |
|
29 |
8
|
adantr |
|
30 |
9
|
adantr |
|
31 |
29 30 26 6
|
syl3anc |
|
32 |
27 28 31
|
mp2and |
|
33 |
25
|
simp3d |
|
34 |
26 32 33
|
3jca |
|
35 |
22 34
|
jaodan |
|
36 |
4
|
elixx1 |
|
37 |
8 18 36
|
syl2anc |
|
38 |
37
|
biimpar |
|
39 |
35 38
|
syldan |
|
40 |
|
exmid |
|
41 |
37
|
biimpa |
|
42 |
41
|
simp1d |
|
43 |
41
|
simp2d |
|
44 |
42 43
|
jca |
|
45 |
|
df-3an |
|
46 |
11 45
|
bitrdi |
|
47 |
46
|
adantr |
|
48 |
44 47
|
mpbirand |
|
49 |
|
3anan12 |
|
50 |
24 49
|
bitrdi |
|
51 |
50
|
adantr |
|
52 |
41
|
simp3d |
|
53 |
42 52
|
jca |
|
54 |
53
|
biantrud |
|
55 |
9
|
adantr |
|
56 |
55 42 3
|
syl2anc |
|
57 |
51 54 56
|
3bitr2d |
|
58 |
48 57
|
orbi12d |
|
59 |
40 58
|
mpbiri |
|
60 |
39 59
|
impbida |
|
61 |
7 60
|
syl5bb |
|
62 |
61
|
eqrdv |
|