Database
REAL AND COMPLEX NUMBERS
Order sets
Real number intervals
ixxval
Next ⟩
elixx1
Metamath Proof Explorer
Ascii
Unicode
Theorem
ixxval
Description:
Value of the interval function.
(Contributed by
Mario Carneiro
, 3-Nov-2013)
Ref
Expression
Hypothesis
ixx.1
⊢
O
=
x
∈
ℝ
*
,
y
∈
ℝ
*
⟼
z
∈
ℝ
*
|
x
R
z
∧
z
S
y
Assertion
ixxval
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
A
O
B
=
z
∈
ℝ
*
|
A
R
z
∧
z
S
B
Proof
Step
Hyp
Ref
Expression
1
ixx.1
⊢
O
=
x
∈
ℝ
*
,
y
∈
ℝ
*
⟼
z
∈
ℝ
*
|
x
R
z
∧
z
S
y
2
breq1
⊢
x
=
A
→
x
R
z
↔
A
R
z
3
2
anbi1d
⊢
x
=
A
→
x
R
z
∧
z
S
y
↔
A
R
z
∧
z
S
y
4
3
rabbidv
⊢
x
=
A
→
z
∈
ℝ
*
|
x
R
z
∧
z
S
y
=
z
∈
ℝ
*
|
A
R
z
∧
z
S
y
5
breq2
⊢
y
=
B
→
z
S
y
↔
z
S
B
6
5
anbi2d
⊢
y
=
B
→
A
R
z
∧
z
S
y
↔
A
R
z
∧
z
S
B
7
6
rabbidv
⊢
y
=
B
→
z
∈
ℝ
*
|
A
R
z
∧
z
S
y
=
z
∈
ℝ
*
|
A
R
z
∧
z
S
B
8
xrex
⊢
ℝ
*
∈
V
9
8
rabex
⊢
z
∈
ℝ
*
|
A
R
z
∧
z
S
B
∈
V
10
4
7
1
9
ovmpo
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
A
O
B
=
z
∈
ℝ
*
|
A
R
z
∧
z
S
B