Metamath Proof Explorer


Theorem ixxval

Description: Value of the interval function. (Contributed by Mario Carneiro, 3-Nov-2013)

Ref Expression
Hypothesis ixx.1 O = x * , y * z * | x R z z S y
Assertion ixxval A * B * A O B = z * | A R z z S B

Proof

Step Hyp Ref Expression
1 ixx.1 O = x * , y * z * | x R z z S y
2 breq1 x = A x R z A R z
3 2 anbi1d x = A x R z z S y A R z z S y
4 3 rabbidv x = A z * | x R z z S y = z * | A R z z S y
5 breq2 y = B z S y z S B
6 5 anbi2d y = B A R z z S y A R z z S B
7 6 rabbidv y = B z * | A R z z S y = z * | A R z z S B
8 xrex * V
9 8 rabex z * | A R z z S B V
10 4 7 1 9 ovmpo A * B * A O B = z * | A R z z S B