Metamath Proof Explorer


Theorem jabtaib

Description: For when pm3.4 lacks a pm3.4i. (Contributed by Jarvin Udandy, 9-Sep-2020)

Ref Expression
Hypothesis jabtaib.1 φ ψ
Assertion jabtaib φ ψ

Proof

Step Hyp Ref Expression
1 jabtaib.1 φ ψ
2 pm3.4 φ ψ φ ψ
3 1 2 ax-mp φ ψ