Metamath Proof Explorer


Theorem jad

Description: Deduction form of ja . (Contributed by Scott Fenton, 13-Dec-2010) (Proof shortened by Andrew Salmon, 17-Sep-2011)

Ref Expression
Hypotheses jad.1 φ ¬ ψ θ
jad.2 φ χ θ
Assertion jad φ ψ χ θ

Proof

Step Hyp Ref Expression
1 jad.1 φ ¬ ψ θ
2 jad.2 φ χ θ
3 1 com12 ¬ ψ φ θ
4 2 com12 χ φ θ
5 3 4 ja ψ χ φ θ
6 5 com12 φ ψ χ θ