Metamath Proof Explorer


Theorem jaob

Description: Disjunction of antecedents. Compare Theorem *4.77 of WhiteheadRussell p. 121. (Contributed by NM, 30-May-1994) (Proof shortened by Wolf Lammen, 9-Dec-2012)

Ref Expression
Assertion jaob φ χ ψ φ ψ χ ψ

Proof

Step Hyp Ref Expression
1 pm2.67-2 φ χ ψ φ ψ
2 olc χ φ χ
3 2 imim1i φ χ ψ χ ψ
4 1 3 jca φ χ ψ φ ψ χ ψ
5 pm3.44 φ ψ χ ψ φ χ ψ
6 4 5 impbii φ χ ψ φ ψ χ ψ