Database  
				SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)  
				Mathbox for Alan Sare  
				Conventional Metamath proofs, some derived from VD proofs  
				jaoded  
			 
				
		 
		 Metamath Proof Explorer 
		
			
		 
		 
		
		Description:   Deduction form of jao  .  Disjunction of antecedents.  (Contributed by Alan Sare , 3-Dec-2015)   (Proof modification is discouraged.) 
       (New usage is discouraged.) 
		
			
				
					 
					 
					Ref 
					Expression 
				 
					
						 
						Hypotheses 
						jaoded.1  
						   ⊢   φ   →    ψ   →   χ           
					 
					
						 
						 
						jaoded.2  
						   ⊢   θ   →    τ   →   χ           
					 
					
						 
						 
						jaoded.3  
						   ⊢   η   →    ψ   ∨   τ           
					 
				
					 
					Assertion 
					jaoded  
					   ⊢    φ   ∧   θ   ∧   η      →   χ        
				 
			
		 
		 
			
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1  
							
								
							 
							jaoded.1  
							    ⊢   φ   →    ψ   →   χ           
						 
						
							2  
							
								
							 
							jaoded.2  
							    ⊢   θ   →    τ   →   χ           
						 
						
							3  
							
								
							 
							jaoded.3  
							    ⊢   η   →    ψ   ∨   τ           
						 
						
							4  
							
								
							 
							jao  
							    ⊢    ψ   →   χ      →     τ   →   χ      →     ψ   ∨   τ      →   χ              
						 
						
							5  
							
								4 
							 
							3imp  
							    ⊢     ψ   →   χ      ∧    τ   →   χ      ∧    ψ   ∨   τ         →   χ        
						 
						
							6  
							
								1  2  3  5 
							 
							syl3an  
							    ⊢    φ   ∧   θ   ∧   η      →   χ