Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alan Sare
Conventional Metamath proofs, some derived from VD proofs
jaoded
Metamath Proof Explorer
Description: Deduction form of jao . Disjunction of antecedents. (Contributed by Alan Sare , 3-Dec-2015) (Proof modification is discouraged.)
(New usage is discouraged.)
Ref
Expression
Hypotheses
jaoded.1
⊢ φ → ψ → χ
jaoded.2
⊢ θ → τ → χ
jaoded.3
⊢ η → ψ ∨ τ
Assertion
jaoded
⊢ φ ∧ θ ∧ η → χ
Proof
Step
Hyp
Ref
Expression
1
jaoded.1
⊢ φ → ψ → χ
2
jaoded.2
⊢ θ → τ → χ
3
jaoded.3
⊢ η → ψ ∨ τ
4
jao
⊢ ψ → χ → τ → χ → ψ ∨ τ → χ
5
4
3imp
⊢ ψ → χ ∧ τ → χ ∧ ψ ∨ τ → χ
6
1 2 3 5
syl3an
⊢ φ ∧ θ ∧ η → χ