Metamath Proof Explorer


Theorem jensenlem2

Description: Lemma for jensen . (Contributed by Mario Carneiro, 21-Jun-2015)

Ref Expression
Hypotheses jensen.1 φ D
jensen.2 φ F : D
jensen.3 φ a D b D a b D
jensen.4 φ A Fin
jensen.5 φ T : A 0 +∞
jensen.6 φ X : A D
jensen.7 φ 0 < fld T
jensen.8 φ x D y D t 0 1 F t x + 1 t y t F x + 1 t F y
jensenlem.1 φ ¬ z B
jensenlem.2 φ B z A
jensenlem.s S = fld T B
jensenlem.l L = fld T B z
jensenlem.3 φ S +
jensenlem.4 φ fld T × f X B S D
jensenlem.5 φ F fld T × f X B S fld T × f F X B S
Assertion jensenlem2 φ fld T × f X B z L D F fld T × f X B z L fld T × f F X B z L

Proof

Step Hyp Ref Expression
1 jensen.1 φ D
2 jensen.2 φ F : D
3 jensen.3 φ a D b D a b D
4 jensen.4 φ A Fin
5 jensen.5 φ T : A 0 +∞
6 jensen.6 φ X : A D
7 jensen.7 φ 0 < fld T
8 jensen.8 φ x D y D t 0 1 F t x + 1 t y t F x + 1 t F y
9 jensenlem.1 φ ¬ z B
10 jensenlem.2 φ B z A
11 jensenlem.s S = fld T B
12 jensenlem.l L = fld T B z
13 jensenlem.3 φ S +
14 jensenlem.4 φ fld T × f X B S D
15 jensenlem.5 φ F fld T × f X B S fld T × f F X B S
16 cnfld0 0 = 0 fld
17 cnring fld Ring
18 ringabl fld Ring fld Abel
19 17 18 mp1i φ fld Abel
20 10 unssad φ B A
21 4 20 ssfid φ B Fin
22 resubdrg SubRing fld fld DivRing
23 22 simpli SubRing fld
24 subrgsubg SubRing fld SubGrp fld
25 23 24 mp1i φ SubGrp fld
26 remulcl x y x y
27 26 adantl φ x y x y
28 rge0ssre 0 +∞
29 fss T : A 0 +∞ 0 +∞ T : A
30 5 28 29 sylancl φ T : A
31 6 1 fssd φ X : A
32 inidm A A = A
33 27 30 31 4 4 32 off φ T × f X : A
34 33 20 fssresd φ T × f X B : B
35 c0ex 0 V
36 35 a1i φ 0 V
37 34 21 36 fdmfifsupp φ finSupp 0 T × f X B
38 16 19 21 25 34 37 gsumsubgcl φ fld T × f X B
39 38 recnd φ fld T × f X B
40 ax-resscn
41 28 40 sstri 0 +∞
42 10 unssbd φ z A
43 vex z V
44 43 snss z A z A
45 42 44 sylibr φ z A
46 5 45 ffvelrnd φ T z 0 +∞
47 41 46 sselid φ T z
48 6 45 ffvelrnd φ X z D
49 1 48 sseldd φ X z
50 49 recnd φ X z
51 47 50 mulcld φ T z X z
52 1 2 3 4 5 6 7 8 9 10 11 12 jensenlem1 φ L = S + T z
53 13 rpred φ S
54 elrege0 T z 0 +∞ T z 0 T z
55 54 simplbi T z 0 +∞ T z
56 46 55 syl φ T z
57 53 56 readdcld φ S + T z
58 52 57 eqeltrd φ L
59 58 recnd φ L
60 0red φ 0
61 13 rpgt0d φ 0 < S
62 54 simprbi T z 0 +∞ 0 T z
63 46 62 syl φ 0 T z
64 53 56 addge01d φ 0 T z S S + T z
65 63 64 mpbid φ S S + T z
66 65 52 breqtrrd φ S L
67 60 53 58 61 66 ltletrd φ 0 < L
68 67 gt0ne0d φ L 0
69 39 51 59 68 divdird φ fld T × f X B + T z X z L = fld T × f X B L + T z X z L
70 cnfldbas = Base fld
71 cnfldadd + = + fld
72 ringcmn fld Ring fld CMnd
73 17 72 mp1i φ fld CMnd
74 20 sselda φ x B x A
75 5 ffvelrnda φ x A T x 0 +∞
76 74 75 syldan φ x B T x 0 +∞
77 41 76 sselid φ x B T x
78 1 adantr φ x B D
79 6 ffvelrnda φ x A X x D
80 74 79 syldan φ x B X x D
81 78 80 sseldd φ x B X x
82 81 recnd φ x B X x
83 77 82 mulcld φ x B T x X x
84 fveq2 x = z T x = T z
85 fveq2 x = z X x = X z
86 84 85 oveq12d x = z T x X x = T z X z
87 70 71 73 21 83 45 9 51 86 gsumunsn φ fld x B z T x X x = fld x B T x X x + T z X z
88 5 feqmptd φ T = x A T x
89 6 feqmptd φ X = x A X x
90 4 75 79 88 89 offval2 φ T × f X = x A T x X x
91 90 reseq1d φ T × f X B z = x A T x X x B z
92 10 resmptd φ x A T x X x B z = x B z T x X x
93 91 92 eqtrd φ T × f X B z = x B z T x X x
94 93 oveq2d φ fld T × f X B z = fld x B z T x X x
95 90 reseq1d φ T × f X B = x A T x X x B
96 20 resmptd φ x A T x X x B = x B T x X x
97 95 96 eqtrd φ T × f X B = x B T x X x
98 97 oveq2d φ fld T × f X B = fld x B T x X x
99 98 oveq1d φ fld T × f X B + T z X z = fld x B T x X x + T z X z
100 87 94 99 3eqtr4d φ fld T × f X B z = fld T × f X B + T z X z
101 100 oveq1d φ fld T × f X B z L = fld T × f X B + T z X z L
102 53 recnd φ S
103 13 rpne0d φ S 0
104 39 102 59 103 68 dmdcand φ S L fld T × f X B S = fld T × f X B L
105 59 102 59 68 divsubdird φ L S L = L L S L
106 102 47 52 mvrladdd φ L S = T z
107 106 oveq1d φ L S L = T z L
108 59 68 dividd φ L L = 1
109 108 oveq1d φ L L S L = 1 S L
110 105 107 109 3eqtr3rd φ 1 S L = T z L
111 110 oveq1d φ 1 S L X z = T z L X z
112 47 50 59 68 div23d φ T z X z L = T z L X z
113 111 112 eqtr4d φ 1 S L X z = T z X z L
114 104 113 oveq12d φ S L fld T × f X B S + 1 S L X z = fld T × f X B L + T z X z L
115 69 101 114 3eqtr4d φ fld T × f X B z L = S L fld T × f X B S + 1 S L X z
116 53 58 68 redivcld φ S L
117 13 rpge0d φ 0 S
118 divge0 S 0 S L 0 < L 0 S L
119 53 117 58 67 118 syl22anc φ 0 S L
120 59 mulid1d φ L 1 = L
121 66 120 breqtrrd φ S L 1
122 1red φ 1
123 ledivmul S 1 L 0 < L S L 1 S L 1
124 53 122 58 67 123 syl112anc φ S L 1 S L 1
125 121 124 mpbird φ S L 1
126 elicc01 S L 0 1 S L 0 S L S L 1
127 116 119 125 126 syl3anbrc φ S L 0 1
128 14 48 127 3jca φ fld T × f X B S D X z D S L 0 1
129 1 3 cvxcl φ fld T × f X B S D X z D S L 0 1 S L fld T × f X B S + 1 S L X z D
130 128 129 mpdan φ S L fld T × f X B S + 1 S L X z D
131 115 130 eqeltrd φ fld T × f X B z L D
132 2 130 ffvelrnd φ F S L fld T × f X B S + 1 S L X z
133 2 14 ffvelrnd φ F fld T × f X B S
134 116 133 remulcld φ S L F fld T × f X B S
135 2 48 ffvelrnd φ F X z
136 56 135 remulcld φ T z F X z
137 136 58 68 redivcld φ T z F X z L
138 134 137 readdcld φ S L F fld T × f X B S + T z F X z L
139 fco F : D X : A D F X : A
140 2 6 139 syl2anc φ F X : A
141 27 30 140 4 4 32 off φ T × f F X : A
142 141 20 fssresd φ T × f F X B : B
143 142 21 36 fdmfifsupp φ finSupp 0 T × f F X B
144 16 19 21 25 142 143 gsumsubgcl φ fld T × f F X B
145 144 53 103 redivcld φ fld T × f F X B S
146 116 145 remulcld φ S L fld T × f F X B S
147 1re 1
148 resubcl 1 S L 1 S L
149 147 116 148 sylancr φ 1 S L
150 149 135 remulcld φ 1 S L F X z
151 146 150 readdcld φ S L fld T × f F X B S + 1 S L F X z
152 oveq2 x = fld T × f X B S t x = t fld T × f X B S
153 152 fvoveq1d x = fld T × f X B S F t x + 1 t y = F t fld T × f X B S + 1 t y
154 fveq2 x = fld T × f X B S F x = F fld T × f X B S
155 154 oveq2d x = fld T × f X B S t F x = t F fld T × f X B S
156 155 oveq1d x = fld T × f X B S t F x + 1 t F y = t F fld T × f X B S + 1 t F y
157 153 156 breq12d x = fld T × f X B S F t x + 1 t y t F x + 1 t F y F t fld T × f X B S + 1 t y t F fld T × f X B S + 1 t F y
158 157 imbi2d x = fld T × f X B S φ F t x + 1 t y t F x + 1 t F y φ F t fld T × f X B S + 1 t y t F fld T × f X B S + 1 t F y
159 oveq2 y = X z 1 t y = 1 t X z
160 159 oveq2d y = X z t fld T × f X B S + 1 t y = t fld T × f X B S + 1 t X z
161 160 fveq2d y = X z F t fld T × f X B S + 1 t y = F t fld T × f X B S + 1 t X z
162 fveq2 y = X z F y = F X z
163 162 oveq2d y = X z 1 t F y = 1 t F X z
164 163 oveq2d y = X z t F fld T × f X B S + 1 t F y = t F fld T × f X B S + 1 t F X z
165 161 164 breq12d y = X z F t fld T × f X B S + 1 t y t F fld T × f X B S + 1 t F y F t fld T × f X B S + 1 t X z t F fld T × f X B S + 1 t F X z
166 165 imbi2d y = X z φ F t fld T × f X B S + 1 t y t F fld T × f X B S + 1 t F y φ F t fld T × f X B S + 1 t X z t F fld T × f X B S + 1 t F X z
167 oveq1 t = S L t fld T × f X B S = S L fld T × f X B S
168 oveq2 t = S L 1 t = 1 S L
169 168 oveq1d t = S L 1 t X z = 1 S L X z
170 167 169 oveq12d t = S L t fld T × f X B S + 1 t X z = S L fld T × f X B S + 1 S L X z
171 170 fveq2d t = S L F t fld T × f X B S + 1 t X z = F S L fld T × f X B S + 1 S L X z
172 oveq1 t = S L t F fld T × f X B S = S L F fld T × f X B S
173 168 oveq1d t = S L 1 t F X z = 1 S L F X z
174 172 173 oveq12d t = S L t F fld T × f X B S + 1 t F X z = S L F fld T × f X B S + 1 S L F X z
175 171 174 breq12d t = S L F t fld T × f X B S + 1 t X z t F fld T × f X B S + 1 t F X z F S L fld T × f X B S + 1 S L X z S L F fld T × f X B S + 1 S L F X z
176 175 imbi2d t = S L φ F t fld T × f X B S + 1 t X z t F fld T × f X B S + 1 t F X z φ F S L fld T × f X B S + 1 S L X z S L F fld T × f X B S + 1 S L F X z
177 8 expcom x D y D t 0 1 φ F t x + 1 t y t F x + 1 t F y
178 158 166 176 177 vtocl3ga fld T × f X B S D X z D S L 0 1 φ F S L fld T × f X B S + 1 S L X z S L F fld T × f X B S + 1 S L F X z
179 14 48 127 178 syl3anc φ φ F S L fld T × f X B S + 1 S L X z S L F fld T × f X B S + 1 S L F X z
180 179 pm2.43i φ F S L fld T × f X B S + 1 S L X z S L F fld T × f X B S + 1 S L F X z
181 110 oveq1d φ 1 S L F X z = T z L F X z
182 135 recnd φ F X z
183 47 182 59 68 div23d φ T z F X z L = T z L F X z
184 181 183 eqtr4d φ 1 S L F X z = T z F X z L
185 184 oveq2d φ S L F fld T × f X B S + 1 S L F X z = S L F fld T × f X B S + T z F X z L
186 180 185 breqtrd φ F S L fld T × f X B S + 1 S L X z S L F fld T × f X B S + T z F X z L
187 183 181 eqtr4d φ T z F X z L = 1 S L F X z
188 187 oveq2d φ S L F fld T × f X B S + T z F X z L = S L F fld T × f X B S + 1 S L F X z
189 53 58 61 67 divgt0d φ 0 < S L
190 lemul2 F fld T × f X B S fld T × f F X B S S L 0 < S L F fld T × f X B S fld T × f F X B S S L F fld T × f X B S S L fld T × f F X B S
191 133 145 116 189 190 syl112anc φ F fld T × f X B S fld T × f F X B S S L F fld T × f X B S S L fld T × f F X B S
192 15 191 mpbid φ S L F fld T × f X B S S L fld T × f F X B S
193 134 146 150 192 leadd1dd φ S L F fld T × f X B S + 1 S L F X z S L fld T × f F X B S + 1 S L F X z
194 188 193 eqbrtrd φ S L F fld T × f X B S + T z F X z L S L fld T × f F X B S + 1 S L F X z
195 132 138 151 186 194 letrd φ F S L fld T × f X B S + 1 S L X z S L fld T × f F X B S + 1 S L F X z
196 115 fveq2d φ F fld T × f X B z L = F S L fld T × f X B S + 1 S L X z
197 144 recnd φ fld T × f F X B
198 136 recnd φ T z F X z
199 197 198 59 68 divdird φ fld T × f F X B + T z F X z L = fld T × f F X B L + T z F X z L
200 28 75 sselid φ x A T x
201 2 ffvelrnda φ X x D F X x
202 79 201 syldan φ x A F X x
203 200 202 remulcld φ x A T x F X x
204 203 recnd φ x A T x F X x
205 74 204 syldan φ x B T x F X x
206 85 fveq2d x = z F X x = F X z
207 84 206 oveq12d x = z T x F X x = T z F X z
208 70 71 73 21 205 45 9 198 207 gsumunsn φ fld x B z T x F X x = fld x B T x F X x + T z F X z
209 2 feqmptd φ F = y D F y
210 fveq2 y = X x F y = F X x
211 79 89 209 210 fmptco φ F X = x A F X x
212 4 75 202 88 211 offval2 φ T × f F X = x A T x F X x
213 212 reseq1d φ T × f F X B z = x A T x F X x B z
214 10 resmptd φ x A T x F X x B z = x B z T x F X x
215 213 214 eqtrd φ T × f F X B z = x B z T x F X x
216 215 oveq2d φ fld T × f F X B z = fld x B z T x F X x
217 212 reseq1d φ T × f F X B = x A T x F X x B
218 20 resmptd φ x A T x F X x B = x B T x F X x
219 217 218 eqtrd φ T × f F X B = x B T x F X x
220 219 oveq2d φ fld T × f F X B = fld x B T x F X x
221 220 oveq1d φ fld T × f F X B + T z F X z = fld x B T x F X x + T z F X z
222 208 216 221 3eqtr4d φ fld T × f F X B z = fld T × f F X B + T z F X z
223 222 oveq1d φ fld T × f F X B z L = fld T × f F X B + T z F X z L
224 197 102 59 103 68 dmdcand φ S L fld T × f F X B S = fld T × f F X B L
225 224 184 oveq12d φ S L fld T × f F X B S + 1 S L F X z = fld T × f F X B L + T z F X z L
226 199 223 225 3eqtr4d φ fld T × f F X B z L = S L fld T × f F X B S + 1 S L F X z
227 195 196 226 3brtr4d φ F fld T × f X B z L fld T × f F X B z L
228 131 227 jca φ fld T × f X B z L D F fld T × f X B z L fld T × f F X B z L