Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|
2 |
|
oveq1 |
|
3 |
2
|
oveq2d |
|
4 |
1 3
|
breq12d |
|
5 |
4
|
imbi2d |
|
6 |
|
oveq2 |
|
7 |
|
oveq1 |
|
8 |
7
|
oveq2d |
|
9 |
6 8
|
breq12d |
|
10 |
9
|
imbi2d |
|
11 |
|
oveq2 |
|
12 |
|
oveq1 |
|
13 |
12
|
oveq2d |
|
14 |
11 13
|
breq12d |
|
15 |
14
|
imbi2d |
|
16 |
|
oveq2 |
|
17 |
|
oveq1 |
|
18 |
17
|
oveq2d |
|
19 |
16 18
|
breq12d |
|
20 |
19
|
imbi2d |
|
21 |
|
1le1 |
|
22 |
21
|
a1i |
|
23 |
|
2cn |
|
24 |
|
eluzelcn |
|
25 |
|
mulcl |
|
26 |
23 24 25
|
sylancr |
|
27 |
|
ax-1cn |
|
28 |
|
subcl |
|
29 |
26 27 28
|
sylancl |
|
30 |
29
|
exp0d |
|
31 |
|
0p1e1 |
|
32 |
31
|
oveq2i |
|
33 |
|
rmy1 |
|
34 |
32 33
|
syl5eq |
|
35 |
22 30 34
|
3brtr4d |
|
36 |
|
2re |
|
37 |
|
eluzelre |
|
38 |
37
|
adantl |
|
39 |
|
remulcl |
|
40 |
36 38 39
|
sylancr |
|
41 |
|
1re |
|
42 |
|
resubcl |
|
43 |
40 41 42
|
sylancl |
|
44 |
|
peano2nn0 |
|
45 |
44
|
adantr |
|
46 |
43 45
|
reexpcld |
|
47 |
46
|
3adant3 |
|
48 |
|
simpr |
|
49 |
|
nn0z |
|
50 |
49
|
adantr |
|
51 |
50
|
peano2zd |
|
52 |
|
frmy |
|
53 |
52
|
fovcl |
|
54 |
53
|
zred |
|
55 |
48 51 54
|
syl2anc |
|
56 |
55 43
|
remulcld |
|
57 |
56
|
3adant3 |
|
58 |
51
|
peano2zd |
|
59 |
52
|
fovcl |
|
60 |
59
|
zred |
|
61 |
48 58 60
|
syl2anc |
|
62 |
61
|
3adant3 |
|
63 |
29
|
3ad2ant2 |
|
64 |
|
simp1 |
|
65 |
63 64
|
expp1d |
|
66 |
|
simpl |
|
67 |
43 66
|
reexpcld |
|
68 |
|
2nn |
|
69 |
|
eluz2nn |
|
70 |
69
|
adantl |
|
71 |
|
nnmulcl |
|
72 |
68 70 71
|
sylancr |
|
73 |
|
nnm1nn0 |
|
74 |
|
nn0ge0 |
|
75 |
72 73 74
|
3syl |
|
76 |
43 75
|
jca |
|
77 |
67 55 76
|
3jca |
|
78 |
|
lemul1a |
|
79 |
77 78
|
stoic3 |
|
80 |
65 79
|
eqbrtrd |
|
81 |
|
nn0cn |
|
82 |
81
|
adantr |
|
83 |
|
pncan |
|
84 |
82 27 83
|
sylancl |
|
85 |
84
|
oveq2d |
|
86 |
52
|
fovcl |
|
87 |
86
|
zred |
|
88 |
48 50 87
|
syl2anc |
|
89 |
85 88
|
eqeltrd |
|
90 |
|
remulcl |
|
91 |
55 41 90
|
sylancl |
|
92 |
40 55
|
remulcld |
|
93 |
|
nn0re |
|
94 |
93
|
adantr |
|
95 |
94
|
lep1d |
|
96 |
|
lermy |
|
97 |
48 50 51 96
|
syl3anc |
|
98 |
95 97
|
mpbid |
|
99 |
55
|
recnd |
|
100 |
99
|
mulid1d |
|
101 |
98 85 100
|
3brtr4d |
|
102 |
89 91 92 101
|
lesub2dd |
|
103 |
40
|
recnd |
|
104 |
27
|
a1i |
|
105 |
99 103 104
|
subdid |
|
106 |
99 103
|
mulcomd |
|
107 |
106
|
oveq1d |
|
108 |
105 107
|
eqtrd |
|
109 |
|
rmyluc2 |
|
110 |
48 51 109
|
syl2anc |
|
111 |
102 108 110
|
3brtr4d |
|
112 |
111
|
3adant3 |
|
113 |
47 57 62 80 112
|
letrd |
|
114 |
113
|
3exp |
|
115 |
114
|
a2d |
|
116 |
5 10 15 20 35 115
|
nn0ind |
|
117 |
116
|
impcom |
|