Metamath Proof Explorer


Theorem jm2.25lem1

Description: Lemma for jm2.26 . (Contributed by Stefan O'Rear, 2-Oct-2014)

Ref Expression
Assertion jm2.25lem1 A B C D A C D A C D A D B A D B A C B A C B

Proof

Step Hyp Ref Expression
1 simpl1l A B C D A C D A C D A D B A D B A
2 simpl2l A B C D A C D A C D A D B A D B C
3 simpl2r A B C D A C D A C D A D B A D B D
4 simpl1r A B C D A C D A C D A D B A D B B
5 simpl3 A B C D A C D A C D A D B A D B A C D A C D
6 simpr A B C D A C D A C D A D B A D B A D B A D B
7 acongtr A C D B A C D A C D A D B A D B A C B A C B
8 1 2 3 4 5 6 7 syl222anc A B C D A C D A C D A D B A D B A C B A C B
9 simpl1l A B C D A C D A C D A C B A C B A
10 simpl2r A B C D A C D A C D A C B A C B D
11 simpl2l A B C D A C D A C D A C B A C B C
12 simpl1r A B C D A C D A C D A C B A C B B
13 simpl3 A B C D A C D A C D A C B A C B A C D A C D
14 acongsym A C D A C D A C D A D C A D C
15 9 11 10 13 14 syl31anc A B C D A C D A C D A C B A C B A D C A D C
16 simpr A B C D A C D A C D A C B A C B A C B A C B
17 acongtr A D C B A D C A D C A C B A C B A D B A D B
18 9 10 11 12 15 16 17 syl222anc A B C D A C D A C D A C B A C B A D B A D B
19 8 18 impbida A B C D A C D A C D A D B A D B A C B A C B