Step |
Hyp |
Ref |
Expression |
1 |
|
acongrep |
|
2 |
1
|
ad2ant2l |
|
3 |
|
acongrep |
|
4 |
3
|
ad2ant2lr |
|
5 |
|
2z |
|
6 |
|
simpl1l |
|
7 |
|
nnz |
|
8 |
7
|
adantl |
|
9 |
6 8
|
syl |
|
10 |
|
zmulcl |
|
11 |
5 9 10
|
sylancr |
|
12 |
|
simplrl |
|
13 |
12
|
3ad2antl1 |
|
14 |
|
simpl3l |
|
15 |
14
|
elfzelzd |
|
16 |
|
simplrr |
|
17 |
16
|
3ad2antl1 |
|
18 |
|
simpl2r |
|
19 |
|
simpl2l |
|
20 |
|
simplll |
|
21 |
20
|
3ad2antl1 |
|
22 |
|
frmx |
|
23 |
22
|
fovcl |
|
24 |
23
|
nn0zd |
|
25 |
21 9 24
|
syl2anc |
|
26 |
19
|
elfzelzd |
|
27 |
|
frmy |
|
28 |
27
|
fovcl |
|
29 |
21 26 28
|
syl2anc |
|
30 |
27
|
fovcl |
|
31 |
21 17 30
|
syl2anc |
|
32 |
27
|
fovcl |
|
33 |
21 15 32
|
syl2anc |
|
34 |
27
|
fovcl |
|
35 |
21 13 34
|
syl2anc |
|
36 |
|
jm2.26a |
|
37 |
21 9 26 13 36
|
syl22anc |
|
38 |
18 37
|
mpd |
|
39 |
|
simpr |
|
40 |
|
acongtr |
|
41 |
25 29 35 31 38 39 40
|
syl222anc |
|
42 |
|
simpl3r |
|
43 |
|
acongsym |
|
44 |
11 15 17 42 43
|
syl31anc |
|
45 |
|
jm2.26a |
|
46 |
21 9 17 15 45
|
syl22anc |
|
47 |
44 46
|
mpd |
|
48 |
|
acongtr |
|
49 |
25 29 31 33 41 47 48
|
syl222anc |
|
50 |
|
jm2.26lem3 |
|
51 |
6 19 14 49 50
|
syl121anc |
|
52 |
|
id |
|
53 |
|
eqidd |
|
54 |
52 53
|
acongeq12d |
|
55 |
51 54
|
syl |
|
56 |
18 55
|
mpbid |
|
57 |
|
acongsym |
|
58 |
11 15 13 56 57
|
syl31anc |
|
59 |
|
acongtr |
|
60 |
11 13 15 17 58 42 59
|
syl222anc |
|
61 |
60
|
3exp1 |
|
62 |
61
|
expd |
|
63 |
62
|
rexlimdv |
|
64 |
4 63
|
mpd |
|
65 |
64
|
expd |
|
66 |
65
|
rexlimdv |
|
67 |
2 66
|
mpd |
|
68 |
|
jm2.26a |
|
69 |
7 68
|
sylanl2 |
|
70 |
67 69
|
impbid |
|