Database
BASIC ORDER THEORY
Partially ordered sets (posets)
joindef
Next ⟩
joinval
Metamath Proof Explorer
Ascii
Unicode
Theorem
joindef
Description:
Two ways to say that a join is defined.
(Contributed by
NM
, 9-Sep-2018)
Ref
Expression
Hypotheses
joindef.u
⊢
U
=
lub
⁡
K
joindef.j
⊢
∨
˙
=
join
⁡
K
joindef.k
⊢
φ
→
K
∈
V
joindef.x
⊢
φ
→
X
∈
W
joindef.y
⊢
φ
→
Y
∈
Z
Assertion
joindef
⊢
φ
→
X
Y
∈
dom
⁡
∨
˙
↔
X
Y
∈
dom
⁡
U
Proof
Step
Hyp
Ref
Expression
1
joindef.u
⊢
U
=
lub
⁡
K
2
joindef.j
⊢
∨
˙
=
join
⁡
K
3
joindef.k
⊢
φ
→
K
∈
V
4
joindef.x
⊢
φ
→
X
∈
W
5
joindef.y
⊢
φ
→
Y
∈
Z
6
1
2
joindm
⊢
K
∈
V
→
dom
⁡
∨
˙
=
x
y
|
x
y
∈
dom
⁡
U
7
6
eleq2d
⊢
K
∈
V
→
X
Y
∈
dom
⁡
∨
˙
↔
X
Y
∈
x
y
|
x
y
∈
dom
⁡
U
8
3
7
syl
⊢
φ
→
X
Y
∈
dom
⁡
∨
˙
↔
X
Y
∈
x
y
|
x
y
∈
dom
⁡
U
9
preq1
⊢
x
=
X
→
x
y
=
X
y
10
9
eleq1d
⊢
x
=
X
→
x
y
∈
dom
⁡
U
↔
X
y
∈
dom
⁡
U
11
preq2
⊢
y
=
Y
→
X
y
=
X
Y
12
11
eleq1d
⊢
y
=
Y
→
X
y
∈
dom
⁡
U
↔
X
Y
∈
dom
⁡
U
13
10
12
opelopabg
⊢
X
∈
W
∧
Y
∈
Z
→
X
Y
∈
x
y
|
x
y
∈
dom
⁡
U
↔
X
Y
∈
dom
⁡
U
14
4
5
13
syl2anc
⊢
φ
→
X
Y
∈
x
y
|
x
y
∈
dom
⁡
U
↔
X
Y
∈
dom
⁡
U
15
8
14
bitrd
⊢
φ
→
X
Y
∈
dom
⁡
∨
˙
↔
X
Y
∈
dom
⁡
U