Metamath Proof Explorer


Theorem joindef

Description: Two ways to say that a join is defined. (Contributed by NM, 9-Sep-2018)

Ref Expression
Hypotheses joindef.u U = lub K
joindef.j ˙ = join K
joindef.k φ K V
joindef.x φ X W
joindef.y φ Y Z
Assertion joindef φ X Y dom ˙ X Y dom U

Proof

Step Hyp Ref Expression
1 joindef.u U = lub K
2 joindef.j ˙ = join K
3 joindef.k φ K V
4 joindef.x φ X W
5 joindef.y φ Y Z
6 1 2 joindm K V dom ˙ = x y | x y dom U
7 6 eleq2d K V X Y dom ˙ X Y x y | x y dom U
8 3 7 syl φ X Y dom ˙ X Y x y | x y dom U
9 preq1 x = X x y = X y
10 9 eleq1d x = X x y dom U X y dom U
11 preq2 y = Y X y = X Y
12 11 eleq1d y = Y X y dom U X Y dom U
13 10 12 opelopabg X W Y Z X Y x y | x y dom U X Y dom U
14 4 5 13 syl2anc φ X Y x y | x y dom U X Y dom U
15 8 14 bitrd φ X Y dom ˙ X Y dom U