Database
BASIC ORDER THEORY
Partially ordered sets (posets)
joindm
Next ⟩
joindef
Metamath Proof Explorer
Ascii
Unicode
Theorem
joindm
Description:
Domain of join function for a poset-type structure.
(Contributed by
NM
, 16-Sep-2018)
Ref
Expression
Hypotheses
joinfval.u
⊢
U
=
lub
⁡
K
joinfval.j
⊢
∨
˙
=
join
⁡
K
Assertion
joindm
⊢
K
∈
V
→
dom
⁡
∨
˙
=
x
y
|
x
y
∈
dom
⁡
U
Proof
Step
Hyp
Ref
Expression
1
joinfval.u
⊢
U
=
lub
⁡
K
2
joinfval.j
⊢
∨
˙
=
join
⁡
K
3
1
2
joinfval2
⊢
K
∈
V
→
∨
˙
=
x
y
z
|
x
y
∈
dom
⁡
U
∧
z
=
U
⁡
x
y
4
3
dmeqd
⊢
K
∈
V
→
dom
⁡
∨
˙
=
dom
⁡
x
y
z
|
x
y
∈
dom
⁡
U
∧
z
=
U
⁡
x
y
5
dmoprab
⊢
dom
⁡
x
y
z
|
x
y
∈
dom
⁡
U
∧
z
=
U
⁡
x
y
=
x
y
|
∃
z
x
y
∈
dom
⁡
U
∧
z
=
U
⁡
x
y
6
fvex
⊢
U
⁡
x
y
∈
V
7
6
isseti
⊢
∃
z
z
=
U
⁡
x
y
8
19.42v
⊢
∃
z
x
y
∈
dom
⁡
U
∧
z
=
U
⁡
x
y
↔
x
y
∈
dom
⁡
U
∧
∃
z
z
=
U
⁡
x
y
9
7
8
mpbiran2
⊢
∃
z
x
y
∈
dom
⁡
U
∧
z
=
U
⁡
x
y
↔
x
y
∈
dom
⁡
U
10
9
opabbii
⊢
x
y
|
∃
z
x
y
∈
dom
⁡
U
∧
z
=
U
⁡
x
y
=
x
y
|
x
y
∈
dom
⁡
U
11
5
10
eqtri
⊢
dom
⁡
x
y
z
|
x
y
∈
dom
⁡
U
∧
z
=
U
⁡
x
y
=
x
y
|
x
y
∈
dom
⁡
U
12
4
11
eqtrdi
⊢
K
∈
V
→
dom
⁡
∨
˙
=
x
y
|
x
y
∈
dom
⁡
U