Metamath Proof Explorer


Theorem joindm

Description: Domain of join function for a poset-type structure. (Contributed by NM, 16-Sep-2018)

Ref Expression
Hypotheses joinfval.u U = lub K
joinfval.j ˙ = join K
Assertion joindm K V dom ˙ = x y | x y dom U

Proof

Step Hyp Ref Expression
1 joinfval.u U = lub K
2 joinfval.j ˙ = join K
3 1 2 joinfval2 K V ˙ = x y z | x y dom U z = U x y
4 3 dmeqd K V dom ˙ = dom x y z | x y dom U z = U x y
5 dmoprab dom x y z | x y dom U z = U x y = x y | z x y dom U z = U x y
6 fvex U x y V
7 6 isseti z z = U x y
8 19.42v z x y dom U z = U x y x y dom U z z = U x y
9 7 8 mpbiran2 z x y dom U z = U x y x y dom U
10 9 opabbii x y | z x y dom U z = U x y = x y | x y dom U
11 5 10 eqtri dom x y z | x y dom U z = U x y = x y | x y dom U
12 4 11 eqtrdi K V dom ˙ = x y | x y dom U