Metamath Proof Explorer


Theorem joinfval2

Description: Value of join function for a poset-type structure. (Contributed by NM, 12-Sep-2011) (Revised by NM, 9-Sep-2018)

Ref Expression
Hypotheses joinfval.u U = lub K
joinfval.j ˙ = join K
Assertion joinfval2 K V ˙ = x y z | x y dom U z = U x y

Proof

Step Hyp Ref Expression
1 joinfval.u U = lub K
2 joinfval.j ˙ = join K
3 1 2 joinfval K V ˙ = x y z | x y U z
4 1 lubfun Fun U
5 funbrfv2b Fun U x y U z x y dom U U x y = z
6 4 5 ax-mp x y U z x y dom U U x y = z
7 eqcom U x y = z z = U x y
8 7 anbi2i x y dom U U x y = z x y dom U z = U x y
9 6 8 bitri x y U z x y dom U z = U x y
10 9 oprabbii x y z | x y U z = x y z | x y dom U z = U x y
11 3 10 eqtrdi K V ˙ = x y z | x y dom U z = U x y