Metamath Proof Explorer


Theorem joiniooico

Description: Disjoint joining an open interval with a closed-below, open-above interval to form a closed-below, open-above interval. (Contributed by Thierry Arnoux, 26-Sep-2017)

Ref Expression
Assertion joiniooico A * B * C * A < B B C A B B C = A B B C = A C

Proof

Step Hyp Ref Expression
1 df-ioo . = a * , b * x * | a < x x < b
2 df-ico . = a * , b * x * | a x x < b
3 xrlenlt B * w * B w ¬ w < B
4 1 2 3 ixxdisj A * B * C * A B B C =
5 4 adantr A * B * C * A < B B C A B B C =
6 xrltletr w * B * C * w < B B C w < C
7 xrltletr A * B * w * A < B B w A < w
8 1 2 3 1 6 7 ixxun A * B * C * A < B B C A B B C = A C
9 5 8 jca A * B * C * A < B B C A B B C = A B B C = A C