Metamath Proof Explorer


Theorem joinlmuladdmuld

Description: Join AB+CB into (A+C) on LHS. (Contributed by David A. Wheeler, 26-Oct-2019)

Ref Expression
Hypotheses joinlmuladdmuld.1 φ A
joinlmuladdmuld.2 φ B
joinlmuladdmuld.3 φ C
joinlmuladdmuld.4 φ A B + C B = D
Assertion joinlmuladdmuld φ A + C B = D

Proof

Step Hyp Ref Expression
1 joinlmuladdmuld.1 φ A
2 joinlmuladdmuld.2 φ B
3 joinlmuladdmuld.3 φ C
4 joinlmuladdmuld.4 φ A B + C B = D
5 1 3 2 adddird φ A + C B = A B + C B
6 5 4 eqtrd φ A + C B = D