Metamath Proof Explorer


Theorem jumpncnp

Description: Jump discontinuity or discontinuity of the first kind: if the left and the right limit don't match, the function is discontinuous at the point. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses jumpncnp.k K = TopOpen fld
jumpncnp.a φ A
jumpncnp.3 J = topGen ran .
jumpncnp.f φ F : A
jumpncnp.b φ B
jumpncnp.lpt1 φ B limPt J A −∞ B
jumpncnp.lpt2 φ B limPt J A B +∞
jumpncnp.8 φ L F −∞ B lim B
jumpncnp.9 φ R F B +∞ lim B
jumpncnp.lner φ L R
Assertion jumpncnp φ ¬ F J CnP TopOpen fld B

Proof

Step Hyp Ref Expression
1 jumpncnp.k K = TopOpen fld
2 jumpncnp.a φ A
3 jumpncnp.3 J = topGen ran .
4 jumpncnp.f φ F : A
5 jumpncnp.b φ B
6 jumpncnp.lpt1 φ B limPt J A −∞ B
7 jumpncnp.lpt2 φ B limPt J A B +∞
8 jumpncnp.8 φ L F −∞ B lim B
9 jumpncnp.9 φ R F B +∞ lim B
10 jumpncnp.lner φ L R
11 1 2 3 4 6 7 8 9 10 limclner φ F lim B =
12 ne0i F B F lim B F lim B
13 12 necon2bi F lim B = ¬ F B F lim B
14 11 13 syl φ ¬ F B F lim B
15 14 intnand φ ¬ F : F B F lim B
16 ax-resscn
17 eqid TopOpen fld = TopOpen fld
18 17 tgioo2 topGen ran . = TopOpen fld 𝑡
19 3 18 eqtri J = TopOpen fld 𝑡
20 17 19 cnplimc B F J CnP TopOpen fld B F : F B F lim B
21 16 5 20 sylancr φ F J CnP TopOpen fld B F : F B F lim B
22 15 21 mtbird φ ¬ F J CnP TopOpen fld B