Metamath Proof Explorer


Theorem kardex

Description: The collection of all sets equinumerous to a set A and having the least possible rank is a set. This is the part of the justification of the definition of kard of Enderton p. 222. (Contributed by NM, 14-Dec-2003)

Ref Expression
Assertion kardex x | x A y y A rank x rank y V

Proof

Step Hyp Ref Expression
1 df-rab x z | z A | y z | z A rank x rank y = x | x z | z A y z | z A rank x rank y
2 vex x V
3 breq1 z = x z A x A
4 2 3 elab x z | z A x A
5 breq1 z = y z A y A
6 5 ralab y z | z A rank x rank y y y A rank x rank y
7 4 6 anbi12i x z | z A y z | z A rank x rank y x A y y A rank x rank y
8 7 abbii x | x z | z A y z | z A rank x rank y = x | x A y y A rank x rank y
9 1 8 eqtri x z | z A | y z | z A rank x rank y = x | x A y y A rank x rank y
10 scottex x z | z A | y z | z A rank x rank y V
11 9 10 eqeltrri x | x A y y A rank x rank y V