Metamath Proof Explorer


Theorem kbass3

Description: Dirac bra-ket associative law <. A | B >. <. C | D >. = ( <. A | B >. <. C | ) | D >. . (Contributed by NM, 30-May-2006) (New usage is discouraged.)

Ref Expression
Assertion kbass3 A B C D bra A B bra C D = bra A B · fn bra C D

Proof

Step Hyp Ref Expression
1 bracl A B bra A B
2 1 adantr A B C D bra A B
3 brafn C bra C :
4 3 ad2antrl A B C D bra C :
5 simprr A B C D D
6 hfmval bra A B bra C : D bra A B · fn bra C D = bra A B bra C D
7 2 4 5 6 syl3anc A B C D bra A B · fn bra C D = bra A B bra C D
8 7 eqcomd A B C D bra A B bra C D = bra A B · fn bra C D