Metamath Proof Explorer


Theorem kbass5

Description: Dirac bra-ket associative law ( | A >. <. B | ) ( | C >. <. D | ) = ( ( | A >. <. B | ) | C >. ) <. D | . (Contributed by NM, 30-May-2006) (New usage is discouraged.)

Ref Expression
Assertion kbass5 A B C D A ketbra B C ketbra D = A ketbra B C ketbra D

Proof

Step Hyp Ref Expression
1 kbval C D x C ketbra D x = x ih D C
2 1 3expa C D x C ketbra D x = x ih D C
3 2 adantll A B C D x C ketbra D x = x ih D C
4 3 fveq2d A B C D x A ketbra B C ketbra D x = A ketbra B x ih D C
5 simplll A B C D x A
6 simpllr A B C D x B
7 simpr A B C D x x
8 simplrr A B C D x D
9 hicl x D x ih D
10 7 8 9 syl2anc A B C D x x ih D
11 simplrl A B C D x C
12 hvmulcl x ih D C x ih D C
13 10 11 12 syl2anc A B C D x x ih D C
14 kbval A B x ih D C A ketbra B x ih D C = x ih D C ih B A
15 5 6 13 14 syl3anc A B C D x A ketbra B x ih D C = x ih D C ih B A
16 4 15 eqtrd A B C D x A ketbra B C ketbra D x = x ih D C ih B A
17 kbop C D C ketbra D :
18 17 adantl A B C D C ketbra D :
19 fvco3 C ketbra D : x A ketbra B C ketbra D x = A ketbra B C ketbra D x
20 18 19 sylan A B C D x A ketbra B C ketbra D x = A ketbra B C ketbra D x
21 kbval A B C A ketbra B C = C ih B A
22 5 6 11 21 syl3anc A B C D x A ketbra B C = C ih B A
23 22 oveq2d A B C D x x ih D A ketbra B C = x ih D C ih B A
24 kbop A B A ketbra B :
25 24 ffvelrnda A B C A ketbra B C
26 25 adantrr A B C D A ketbra B C
27 26 adantr A B C D x A ketbra B C
28 kbval A ketbra B C D x A ketbra B C ketbra D x = x ih D A ketbra B C
29 27 8 7 28 syl3anc A B C D x A ketbra B C ketbra D x = x ih D A ketbra B C
30 ax-his3 x ih D C B x ih D C ih B = x ih D C ih B
31 10 11 6 30 syl3anc A B C D x x ih D C ih B = x ih D C ih B
32 31 oveq1d A B C D x x ih D C ih B A = x ih D C ih B A
33 hicl C B C ih B
34 11 6 33 syl2anc A B C D x C ih B
35 ax-hvmulass x ih D C ih B A x ih D C ih B A = x ih D C ih B A
36 10 34 5 35 syl3anc A B C D x x ih D C ih B A = x ih D C ih B A
37 32 36 eqtrd A B C D x x ih D C ih B A = x ih D C ih B A
38 23 29 37 3eqtr4d A B C D x A ketbra B C ketbra D x = x ih D C ih B A
39 16 20 38 3eqtr4d A B C D x A ketbra B C ketbra D x = A ketbra B C ketbra D x
40 39 ralrimiva A B C D x A ketbra B C ketbra D x = A ketbra B C ketbra D x
41 fco A ketbra B : C ketbra D : A ketbra B C ketbra D :
42 24 17 41 syl2an A B C D A ketbra B C ketbra D :
43 kbop A ketbra B C D A ketbra B C ketbra D :
44 25 43 sylan A B C D A ketbra B C ketbra D :
45 44 anasss A B C D A ketbra B C ketbra D :
46 ffn A ketbra B C ketbra D : A ketbra B C ketbra D Fn
47 ffn A ketbra B C ketbra D : A ketbra B C ketbra D Fn
48 eqfnfv A ketbra B C ketbra D Fn A ketbra B C ketbra D Fn A ketbra B C ketbra D = A ketbra B C ketbra D x A ketbra B C ketbra D x = A ketbra B C ketbra D x
49 46 47 48 syl2an A ketbra B C ketbra D : A ketbra B C ketbra D : A ketbra B C ketbra D = A ketbra B C ketbra D x A ketbra B C ketbra D x = A ketbra B C ketbra D x
50 42 45 49 syl2anc A B C D A ketbra B C ketbra D = A ketbra B C ketbra D x A ketbra B C ketbra D x = A ketbra B C ketbra D x
51 40 50 mpbird A B C D A ketbra B C ketbra D = A ketbra B C ketbra D