Metamath Proof Explorer


Theorem kbpj

Description: If a vector A has norm 1, the outer product | A >. <. A | is the projector onto the subspace spanned by A . http://en.wikipedia.org/wiki/Bra-ket#Linear%5Foperators . (Contributed by NM, 30-May-2006) (New usage is discouraged.)

Ref Expression
Assertion kbpj A norm A = 1 A ketbra A = proj span A

Proof

Step Hyp Ref Expression
1 oveq1 norm A = 1 norm A 2 = 1 2
2 sq1 1 2 = 1
3 1 2 eqtrdi norm A = 1 norm A 2 = 1
4 3 oveq2d norm A = 1 x ih A norm A 2 = x ih A 1
5 hicl x A x ih A
6 5 ancoms A x x ih A
7 6 div1d A x x ih A 1 = x ih A
8 4 7 sylan9eqr A x norm A = 1 x ih A norm A 2 = x ih A
9 8 an32s A norm A = 1 x x ih A norm A 2 = x ih A
10 9 oveq1d A norm A = 1 x x ih A norm A 2 A = x ih A A
11 simpll A norm A = 1 x A
12 simpr A norm A = 1 x x
13 ax-1ne0 1 0
14 neeq1 norm A = 1 norm A 0 1 0
15 13 14 mpbiri norm A = 1 norm A 0
16 normne0 A norm A 0 A 0
17 15 16 syl5ib A norm A = 1 A 0
18 17 imp A norm A = 1 A 0
19 18 adantr A norm A = 1 x A 0
20 pjspansn A x A 0 proj span A x = x ih A norm A 2 A
21 11 12 19 20 syl3anc A norm A = 1 x proj span A x = x ih A norm A 2 A
22 kbval A A x A ketbra A x = x ih A A
23 22 3anidm12 A x A ketbra A x = x ih A A
24 23 adantlr A norm A = 1 x A ketbra A x = x ih A A
25 10 21 24 3eqtr4rd A norm A = 1 x A ketbra A x = proj span A x
26 25 ralrimiva A norm A = 1 x A ketbra A x = proj span A x
27 kbop A A A ketbra A :
28 27 anidms A A ketbra A :
29 28 ffnd A A ketbra A Fn
30 spansnch A span A C
31 pjfn span A C proj span A Fn
32 30 31 syl A proj span A Fn
33 eqfnfv A ketbra A Fn proj span A Fn A ketbra A = proj span A x A ketbra A x = proj span A x
34 29 32 33 syl2anc A A ketbra A = proj span A x A ketbra A x = proj span A x
35 34 adantr A norm A = 1 A ketbra A = proj span A x A ketbra A x = proj span A x
36 26 35 mpbird A norm A = 1 A ketbra A = proj span A