Metamath Proof Explorer


Theorem keephyp2v

Description: Keep a hypothesis containing 2 class variables (for use with the weak deduction theorem dedth ). (Contributed by NM, 16-Apr-2005)

Ref Expression
Hypotheses keephyp2v.1 A = if φ A C ψ χ
keephyp2v.2 B = if φ B D χ θ
keephyp2v.3 C = if φ A C τ η
keephyp2v.4 D = if φ B D η θ
keephyp2v.5 ψ
keephyp2v.6 τ
Assertion keephyp2v θ

Proof

Step Hyp Ref Expression
1 keephyp2v.1 A = if φ A C ψ χ
2 keephyp2v.2 B = if φ B D χ θ
3 keephyp2v.3 C = if φ A C τ η
4 keephyp2v.4 D = if φ B D η θ
5 keephyp2v.5 ψ
6 keephyp2v.6 τ
7 iftrue φ if φ A C = A
8 7 eqcomd φ A = if φ A C
9 8 1 syl φ ψ χ
10 iftrue φ if φ B D = B
11 10 eqcomd φ B = if φ B D
12 11 2 syl φ χ θ
13 9 12 bitrd φ ψ θ
14 5 13 mpbii φ θ
15 iffalse ¬ φ if φ A C = C
16 15 eqcomd ¬ φ C = if φ A C
17 16 3 syl ¬ φ τ η
18 iffalse ¬ φ if φ B D = D
19 18 eqcomd ¬ φ D = if φ B D
20 19 4 syl ¬ φ η θ
21 17 20 bitrd ¬ φ τ θ
22 6 21 mpbii ¬ φ θ
23 14 22 pm2.61i θ