Metamath Proof Explorer


Theorem keephyp3v

Description: Keep a hypothesis containing 3 class variables. (Contributed by NM, 27-Sep-1999)

Ref Expression
Hypotheses keephyp3v.1 A = if φ A D ρ χ
keephyp3v.2 B = if φ B R χ θ
keephyp3v.3 C = if φ C S θ τ
keephyp3v.4 D = if φ A D η ζ
keephyp3v.5 R = if φ B R ζ σ
keephyp3v.6 S = if φ C S σ τ
keephyp3v.7 ρ
keephyp3v.8 η
Assertion keephyp3v τ

Proof

Step Hyp Ref Expression
1 keephyp3v.1 A = if φ A D ρ χ
2 keephyp3v.2 B = if φ B R χ θ
3 keephyp3v.3 C = if φ C S θ τ
4 keephyp3v.4 D = if φ A D η ζ
5 keephyp3v.5 R = if φ B R ζ σ
6 keephyp3v.6 S = if φ C S σ τ
7 keephyp3v.7 ρ
8 keephyp3v.8 η
9 iftrue φ if φ A D = A
10 9 eqcomd φ A = if φ A D
11 10 1 syl φ ρ χ
12 iftrue φ if φ B R = B
13 12 eqcomd φ B = if φ B R
14 13 2 syl φ χ θ
15 iftrue φ if φ C S = C
16 15 eqcomd φ C = if φ C S
17 16 3 syl φ θ τ
18 11 14 17 3bitrd φ ρ τ
19 7 18 mpbii φ τ
20 iffalse ¬ φ if φ A D = D
21 20 eqcomd ¬ φ D = if φ A D
22 21 4 syl ¬ φ η ζ
23 iffalse ¬ φ if φ B R = R
24 23 eqcomd ¬ φ R = if φ B R
25 24 5 syl ¬ φ ζ σ
26 iffalse ¬ φ if φ C S = S
27 26 eqcomd ¬ φ S = if φ C S
28 27 6 syl ¬ φ σ τ
29 22 25 28 3bitrd ¬ φ η τ
30 8 29 mpbii ¬ φ τ
31 19 30 pm2.61i τ