| Step |
Hyp |
Ref |
Expression |
| 1 |
|
kelac1.z |
|
| 2 |
|
kelac1.j |
|
| 3 |
|
kelac1.c |
|
| 4 |
|
kelac1.b |
|
| 5 |
|
kelac1.u |
|
| 6 |
|
kelac1.k |
|
| 7 |
|
eqid |
|
| 8 |
7
|
cldss |
|
| 9 |
3 8
|
syl |
|
| 10 |
9
|
ralrimiva |
|
| 11 |
|
boxriin |
|
| 12 |
10 11
|
syl |
|
| 13 |
|
cmptop |
|
| 14 |
|
0ntop |
|
| 15 |
|
fvprc |
|
| 16 |
15
|
eleq1d |
|
| 17 |
14 16
|
mtbiri |
|
| 18 |
17
|
con4i |
|
| 19 |
6 13 18
|
3syl |
|
| 20 |
2
|
fmpttd |
|
| 21 |
|
dmfex |
|
| 22 |
19 20 21
|
syl2anc |
|
| 23 |
2
|
ralrimiva |
|
| 24 |
|
eqid |
|
| 25 |
24
|
ptunimpt |
|
| 26 |
22 23 25
|
syl2anc |
|
| 27 |
26
|
ineq1d |
|
| 28 |
|
eqid |
|
| 29 |
7
|
topcld |
|
| 30 |
2 29
|
syl |
|
| 31 |
3 30
|
ifcld |
|
| 32 |
22 2 31
|
ptcldmpt |
|
| 33 |
32
|
adantr |
|
| 34 |
|
simprr |
|
| 35 |
|
f1ofo |
|
| 36 |
|
foima |
|
| 37 |
4 35 36
|
3syl |
|
| 38 |
37
|
eqcomd |
|
| 39 |
|
f1ofn |
|
| 40 |
4 39
|
syl |
|
| 41 |
|
ssid |
|
| 42 |
|
fnimaeq0 |
|
| 43 |
40 41 42
|
sylancl |
|
| 44 |
43
|
necon3bid |
|
| 45 |
1 44
|
mpbird |
|
| 46 |
38 45
|
eqnetrd |
|
| 47 |
|
n0 |
|
| 48 |
46 47
|
sylib |
|
| 49 |
|
rexv |
|
| 50 |
48 49
|
sylibr |
|
| 51 |
50
|
ralrimiva |
|
| 52 |
|
ssralv |
|
| 53 |
52
|
adantr |
|
| 54 |
51 53
|
mpan9 |
|
| 55 |
|
eleq1 |
|
| 56 |
55
|
ac6sfi |
|
| 57 |
34 54 56
|
syl2anc |
|
| 58 |
26
|
eqcomd |
|
| 59 |
58
|
ineq1d |
|
| 60 |
59
|
ad2antrr |
|
| 61 |
|
iftrue |
|
| 62 |
61
|
ad2antrl |
|
| 63 |
|
simpll |
|
| 64 |
|
simprl |
|
| 65 |
64
|
sselda |
|
| 66 |
63 65 9
|
syl2anc |
|
| 67 |
66
|
sseld |
|
| 68 |
67
|
impr |
|
| 69 |
62 68
|
eqeltrd |
|
| 70 |
69
|
expr |
|
| 71 |
70
|
ralimdva |
|
| 72 |
71
|
imp |
|
| 73 |
|
eldifn |
|
| 74 |
73
|
iffalsed |
|
| 75 |
74
|
adantl |
|
| 76 |
|
eldifi |
|
| 77 |
76 5
|
sylan2 |
|
| 78 |
75 77
|
eqeltrd |
|
| 79 |
78
|
ralrimiva |
|
| 80 |
79
|
ad2antrr |
|
| 81 |
|
ralun |
|
| 82 |
72 80 81
|
syl2anc |
|
| 83 |
|
undif |
|
| 84 |
83
|
biimpi |
|
| 85 |
84
|
ad2antrl |
|
| 86 |
85
|
raleqdv |
|
| 87 |
86
|
adantr |
|
| 88 |
82 87
|
mpbid |
|
| 89 |
22
|
ad2antrr |
|
| 90 |
|
mptelixpg |
|
| 91 |
89 90
|
syl |
|
| 92 |
88 91
|
mpbird |
|
| 93 |
|
eleq2 |
|
| 94 |
|
eleq2 |
|
| 95 |
|
simplrr |
|
| 96 |
68
|
adantr |
|
| 97 |
93 94 95 96
|
ifbothda |
|
| 98 |
62 97
|
eqeltrd |
|
| 99 |
98
|
expr |
|
| 100 |
99
|
ralimdva |
|
| 101 |
100
|
imp |
|
| 102 |
101
|
adantr |
|
| 103 |
77
|
adantlr |
|
| 104 |
74
|
adantl |
|
| 105 |
|
disjdifr |
|
| 106 |
105
|
a1i |
|
| 107 |
|
simpr |
|
| 108 |
|
simplr |
|
| 109 |
|
disjne |
|
| 110 |
106 107 108 109
|
syl3anc |
|
| 111 |
110
|
neneqd |
|
| 112 |
111
|
iffalsed |
|
| 113 |
103 104 112
|
3eltr4d |
|
| 114 |
113
|
ralrimiva |
|
| 115 |
114
|
adantlr |
|
| 116 |
115
|
adantlr |
|
| 117 |
|
ralun |
|
| 118 |
102 116 117
|
syl2anc |
|
| 119 |
85
|
raleqdv |
|
| 120 |
119
|
ad2antrr |
|
| 121 |
118 120
|
mpbid |
|
| 122 |
22
|
ad3antrrr |
|
| 123 |
|
mptelixpg |
|
| 124 |
122 123
|
syl |
|
| 125 |
121 124
|
mpbird |
|
| 126 |
125
|
ralrimiva |
|
| 127 |
|
mptexg |
|
| 128 |
22 127
|
syl |
|
| 129 |
128
|
ad2antrr |
|
| 130 |
|
eliin |
|
| 131 |
129 130
|
syl |
|
| 132 |
126 131
|
mpbird |
|
| 133 |
92 132
|
elind |
|
| 134 |
133
|
ne0d |
|
| 135 |
60 134
|
eqnetrd |
|
| 136 |
135
|
adantrl |
|
| 137 |
57 136
|
exlimddv |
|
| 138 |
28 6 33 137
|
cmpfiiin |
|
| 139 |
27 138
|
eqnetrd |
|
| 140 |
12 139
|
eqnetrd |
|
| 141 |
|
n0 |
|
| 142 |
140 141
|
sylib |
|
| 143 |
|
elixp2 |
|
| 144 |
143
|
simp3bi |
|
| 145 |
|
f1ocnv |
|
| 146 |
|
f1of |
|
| 147 |
|
ffvelcdm |
|
| 148 |
147
|
ex |
|
| 149 |
4 145 146 148
|
4syl |
|
| 150 |
149
|
ralimdva |
|
| 151 |
150
|
imp |
|
| 152 |
144 151
|
sylan2 |
|
| 153 |
|
mptelixpg |
|
| 154 |
22 153
|
syl |
|
| 155 |
154
|
adantr |
|
| 156 |
152 155
|
mpbird |
|
| 157 |
156
|
ne0d |
|
| 158 |
142 157
|
exlimddv |
|