Step |
Hyp |
Ref |
Expression |
1 |
|
kelac1.z |
|
2 |
|
kelac1.j |
|
3 |
|
kelac1.c |
|
4 |
|
kelac1.b |
|
5 |
|
kelac1.u |
|
6 |
|
kelac1.k |
|
7 |
|
eqid |
|
8 |
7
|
cldss |
|
9 |
3 8
|
syl |
|
10 |
9
|
ralrimiva |
|
11 |
|
boxriin |
|
12 |
10 11
|
syl |
|
13 |
|
cmptop |
|
14 |
|
0ntop |
|
15 |
|
fvprc |
|
16 |
15
|
eleq1d |
|
17 |
14 16
|
mtbiri |
|
18 |
17
|
con4i |
|
19 |
6 13 18
|
3syl |
|
20 |
2
|
fmpttd |
|
21 |
|
dmfex |
|
22 |
19 20 21
|
syl2anc |
|
23 |
2
|
ralrimiva |
|
24 |
|
eqid |
|
25 |
24
|
ptunimpt |
|
26 |
22 23 25
|
syl2anc |
|
27 |
26
|
ineq1d |
|
28 |
|
eqid |
|
29 |
7
|
topcld |
|
30 |
2 29
|
syl |
|
31 |
3 30
|
ifcld |
|
32 |
22 2 31
|
ptcldmpt |
|
33 |
32
|
adantr |
|
34 |
|
simprr |
|
35 |
|
f1ofo |
|
36 |
|
foima |
|
37 |
4 35 36
|
3syl |
|
38 |
37
|
eqcomd |
|
39 |
|
f1ofn |
|
40 |
4 39
|
syl |
|
41 |
|
ssid |
|
42 |
|
fnimaeq0 |
|
43 |
40 41 42
|
sylancl |
|
44 |
43
|
necon3bid |
|
45 |
1 44
|
mpbird |
|
46 |
38 45
|
eqnetrd |
|
47 |
|
n0 |
|
48 |
46 47
|
sylib |
|
49 |
|
rexv |
|
50 |
48 49
|
sylibr |
|
51 |
50
|
ralrimiva |
|
52 |
|
ssralv |
|
53 |
52
|
adantr |
|
54 |
51 53
|
mpan9 |
|
55 |
|
eleq1 |
|
56 |
55
|
ac6sfi |
|
57 |
34 54 56
|
syl2anc |
|
58 |
26
|
eqcomd |
|
59 |
58
|
ineq1d |
|
60 |
59
|
ad2antrr |
|
61 |
|
iftrue |
|
62 |
61
|
ad2antrl |
|
63 |
|
simpll |
|
64 |
|
simprl |
|
65 |
64
|
sselda |
|
66 |
63 65 9
|
syl2anc |
|
67 |
66
|
sseld |
|
68 |
67
|
impr |
|
69 |
62 68
|
eqeltrd |
|
70 |
69
|
expr |
|
71 |
70
|
ralimdva |
|
72 |
71
|
imp |
|
73 |
|
eldifn |
|
74 |
73
|
iffalsed |
|
75 |
74
|
adantl |
|
76 |
|
eldifi |
|
77 |
76 5
|
sylan2 |
|
78 |
75 77
|
eqeltrd |
|
79 |
78
|
ralrimiva |
|
80 |
79
|
ad2antrr |
|
81 |
|
ralun |
|
82 |
72 80 81
|
syl2anc |
|
83 |
|
undif |
|
84 |
83
|
biimpi |
|
85 |
84
|
ad2antrl |
|
86 |
85
|
raleqdv |
|
87 |
86
|
adantr |
|
88 |
82 87
|
mpbid |
|
89 |
22
|
ad2antrr |
|
90 |
|
mptelixpg |
|
91 |
89 90
|
syl |
|
92 |
88 91
|
mpbird |
|
93 |
|
eleq2 |
|
94 |
|
eleq2 |
|
95 |
|
simplrr |
|
96 |
68
|
adantr |
|
97 |
93 94 95 96
|
ifbothda |
|
98 |
62 97
|
eqeltrd |
|
99 |
98
|
expr |
|
100 |
99
|
ralimdva |
|
101 |
100
|
imp |
|
102 |
101
|
adantr |
|
103 |
77
|
adantlr |
|
104 |
74
|
adantl |
|
105 |
|
disjdifr |
|
106 |
105
|
a1i |
|
107 |
|
simpr |
|
108 |
|
simplr |
|
109 |
|
disjne |
|
110 |
106 107 108 109
|
syl3anc |
|
111 |
110
|
neneqd |
|
112 |
111
|
iffalsed |
|
113 |
103 104 112
|
3eltr4d |
|
114 |
113
|
ralrimiva |
|
115 |
114
|
adantlr |
|
116 |
115
|
adantlr |
|
117 |
|
ralun |
|
118 |
102 116 117
|
syl2anc |
|
119 |
85
|
raleqdv |
|
120 |
119
|
ad2antrr |
|
121 |
118 120
|
mpbid |
|
122 |
22
|
ad3antrrr |
|
123 |
|
mptelixpg |
|
124 |
122 123
|
syl |
|
125 |
121 124
|
mpbird |
|
126 |
125
|
ralrimiva |
|
127 |
|
mptexg |
|
128 |
22 127
|
syl |
|
129 |
128
|
ad2antrr |
|
130 |
|
eliin |
|
131 |
129 130
|
syl |
|
132 |
126 131
|
mpbird |
|
133 |
92 132
|
elind |
|
134 |
133
|
ne0d |
|
135 |
60 134
|
eqnetrd |
|
136 |
135
|
adantrl |
|
137 |
57 136
|
exlimddv |
|
138 |
28 6 33 137
|
cmpfiiin |
|
139 |
27 138
|
eqnetrd |
|
140 |
12 139
|
eqnetrd |
|
141 |
|
n0 |
|
142 |
140 141
|
sylib |
|
143 |
|
elixp2 |
|
144 |
143
|
simp3bi |
|
145 |
|
f1ocnv |
|
146 |
|
f1of |
|
147 |
|
ffvelrn |
|
148 |
147
|
ex |
|
149 |
4 145 146 148
|
4syl |
|
150 |
149
|
ralimdva |
|
151 |
150
|
imp |
|
152 |
144 151
|
sylan2 |
|
153 |
|
mptelixpg |
|
154 |
22 153
|
syl |
|
155 |
154
|
adantr |
|
156 |
152 155
|
mpbird |
|
157 |
156
|
ne0d |
|
158 |
142 157
|
exlimddv |
|