Metamath Proof Explorer


Theorem kelac2lem

Description: Lemma for kelac2 and dfac21 : knob topologies are compact. (Contributed by Stefan O'Rear, 22-Feb-2015)

Ref Expression
Assertion kelac2lem S V topGen S 𝒫 S Comp

Proof

Step Hyp Ref Expression
1 prex S 𝒫 S V
2 vex x V
3 2 elpr x S 𝒫 S x = S x = 𝒫 S
4 vex y V
5 4 elpr y S 𝒫 S y = S y = 𝒫 S
6 eqtr3 x = S y = S x = y
7 6 orcd x = S y = S x = y x y =
8 ineq12 x = 𝒫 S y = S x y = 𝒫 S S
9 incom 𝒫 S S = S 𝒫 S
10 pwuninel ¬ 𝒫 S S
11 disjsn S 𝒫 S = ¬ 𝒫 S S
12 10 11 mpbir S 𝒫 S =
13 9 12 eqtri 𝒫 S S =
14 8 13 eqtrdi x = 𝒫 S y = S x y =
15 14 olcd x = 𝒫 S y = S x = y x y =
16 ineq12 x = S y = 𝒫 S x y = S 𝒫 S
17 16 12 eqtrdi x = S y = 𝒫 S x y =
18 17 olcd x = S y = 𝒫 S x = y x y =
19 eqtr3 x = 𝒫 S y = 𝒫 S x = y
20 19 orcd x = 𝒫 S y = 𝒫 S x = y x y =
21 7 15 18 20 ccase x = S x = 𝒫 S y = S y = 𝒫 S x = y x y =
22 3 5 21 syl2anb x S 𝒫 S y S 𝒫 S x = y x y =
23 22 rgen2 x S 𝒫 S y S 𝒫 S x = y x y =
24 baspartn S 𝒫 S V x S 𝒫 S y S 𝒫 S x = y x y = S 𝒫 S TopBases
25 1 23 24 mp2an S 𝒫 S TopBases
26 tgcl S 𝒫 S TopBases topGen S 𝒫 S Top
27 25 26 mp1i S V topGen S 𝒫 S Top
28 prfi S 𝒫 S Fin
29 pwfi S 𝒫 S Fin 𝒫 S 𝒫 S Fin
30 28 29 mpbi 𝒫 S 𝒫 S Fin
31 tgdom S 𝒫 S V topGen S 𝒫 S 𝒫 S 𝒫 S
32 1 31 ax-mp topGen S 𝒫 S 𝒫 S 𝒫 S
33 domfi 𝒫 S 𝒫 S Fin topGen S 𝒫 S 𝒫 S 𝒫 S topGen S 𝒫 S Fin
34 30 32 33 mp2an topGen S 𝒫 S Fin
35 34 a1i S V topGen S 𝒫 S Fin
36 27 35 elind S V topGen S 𝒫 S Top Fin
37 fincmp topGen S 𝒫 S Top Fin topGen S 𝒫 S Comp
38 36 37 syl S V topGen S 𝒫 S Comp