Metamath Proof Explorer


Theorem kercvrlsm

Description: The domain of a linear function is the subspace sum of the kernel and any subspace which covers the range. (Contributed by Stefan O'Rear, 24-Jan-2015) (Revised by Stefan O'Rear, 6-May-2015)

Ref Expression
Hypotheses kercvrlsm.u U = LSubSp S
kercvrlsm.p ˙ = LSSum S
kercvrlsm.z 0 ˙ = 0 T
kercvrlsm.k K = F -1 0 ˙
kercvrlsm.b B = Base S
kercvrlsm.f φ F S LMHom T
kercvrlsm.d φ D U
kercvrlsm.cv φ F D = ran F
Assertion kercvrlsm φ K ˙ D = B

Proof

Step Hyp Ref Expression
1 kercvrlsm.u U = LSubSp S
2 kercvrlsm.p ˙ = LSSum S
3 kercvrlsm.z 0 ˙ = 0 T
4 kercvrlsm.k K = F -1 0 ˙
5 kercvrlsm.b B = Base S
6 kercvrlsm.f φ F S LMHom T
7 kercvrlsm.d φ D U
8 kercvrlsm.cv φ F D = ran F
9 lmhmlmod1 F S LMHom T S LMod
10 6 9 syl φ S LMod
11 4 3 1 lmhmkerlss F S LMHom T K U
12 6 11 syl φ K U
13 1 2 lsmcl S LMod K U D U K ˙ D U
14 10 12 7 13 syl3anc φ K ˙ D U
15 5 1 lssss K ˙ D U K ˙ D B
16 14 15 syl φ K ˙ D B
17 eqid Base T = Base T
18 5 17 lmhmf F S LMHom T F : B Base T
19 6 18 syl φ F : B Base T
20 19 ffnd φ F Fn B
21 fnfvelrn F Fn B a B F a ran F
22 20 21 sylan φ a B F a ran F
23 8 adantr φ a B F D = ran F
24 22 23 eleqtrrd φ a B F a F D
25 20 adantr φ a B F Fn B
26 5 1 lssss D U D B
27 7 26 syl φ D B
28 27 adantr φ a B D B
29 fvelimab F Fn B D B F a F D b D F b = F a
30 25 28 29 syl2anc φ a B F a F D b D F b = F a
31 24 30 mpbid φ a B b D F b = F a
32 lmodgrp S LMod S Grp
33 10 32 syl φ S Grp
34 33 adantr φ a B b D S Grp
35 simprl φ a B b D a B
36 27 sselda φ b D b B
37 36 adantrl φ a B b D b B
38 eqid + S = + S
39 eqid - S = - S
40 5 38 39 grpnpcan S Grp a B b B a - S b + S b = a
41 34 35 37 40 syl3anc φ a B b D a - S b + S b = a
42 41 adantr φ a B b D F b = F a a - S b + S b = a
43 10 ad2antrr φ a B b D F b = F a S LMod
44 5 1 lssss K U K B
45 12 44 syl φ K B
46 45 ad2antrr φ a B b D F b = F a K B
47 27 ad2antrr φ a B b D F b = F a D B
48 eqcom F b = F a F a = F b
49 lmghm F S LMHom T F S GrpHom T
50 6 49 syl φ F S GrpHom T
51 50 adantr φ a B b D F S GrpHom T
52 5 3 4 39 ghmeqker F S GrpHom T a B b B F a = F b a - S b K
53 51 35 37 52 syl3anc φ a B b D F a = F b a - S b K
54 48 53 syl5bb φ a B b D F b = F a a - S b K
55 54 biimpa φ a B b D F b = F a a - S b K
56 simplrr φ a B b D F b = F a b D
57 5 38 2 lsmelvalix S LMod K B D B a - S b K b D a - S b + S b K ˙ D
58 43 46 47 55 56 57 syl32anc φ a B b D F b = F a a - S b + S b K ˙ D
59 42 58 eqeltrrd φ a B b D F b = F a a K ˙ D
60 59 ex φ a B b D F b = F a a K ˙ D
61 60 anassrs φ a B b D F b = F a a K ˙ D
62 61 rexlimdva φ a B b D F b = F a a K ˙ D
63 31 62 mpd φ a B a K ˙ D
64 16 63 eqelssd φ K ˙ D = B