Step |
Hyp |
Ref |
Expression |
1 |
|
kerf1ghm.a |
|
2 |
|
kerf1ghm.b |
|
3 |
|
kerf1ghm.n |
|
4 |
|
kerf1ghm.1 |
|
5 |
|
simpl |
|
6 |
|
f1fn |
|
7 |
6
|
adantl |
|
8 |
|
elpreima |
|
9 |
7 8
|
syl |
|
10 |
9
|
biimpa |
|
11 |
10
|
simpld |
|
12 |
10
|
simprd |
|
13 |
|
fvex |
|
14 |
13
|
elsn |
|
15 |
12 14
|
sylib |
|
16 |
1 2 4 3
|
f1ghm0to0 |
|
17 |
16
|
biimpd |
|
18 |
17
|
3expa |
|
19 |
18
|
imp |
|
20 |
5 11 15 19
|
syl21anc |
|
21 |
20
|
ex |
|
22 |
|
velsn |
|
23 |
21 22
|
syl6ibr |
|
24 |
23
|
ssrdv |
|
25 |
|
ghmgrp1 |
|
26 |
1 3
|
grpidcl |
|
27 |
25 26
|
syl |
|
28 |
3 4
|
ghmid |
|
29 |
|
fvex |
|
30 |
29
|
elsn |
|
31 |
28 30
|
sylibr |
|
32 |
1 2
|
ghmf |
|
33 |
|
ffn |
|
34 |
|
elpreima |
|
35 |
32 33 34
|
3syl |
|
36 |
27 31 35
|
mpbir2and |
|
37 |
36
|
snssd |
|
38 |
37
|
adantr |
|
39 |
24 38
|
eqssd |
|
40 |
32
|
adantr |
|
41 |
|
simpl |
|
42 |
|
simpr2l |
|
43 |
|
simpr2r |
|
44 |
|
simpr3 |
|
45 |
|
eqid |
|
46 |
|
eqid |
|
47 |
1 4 45 46
|
ghmeqker |
|
48 |
47
|
biimpa |
|
49 |
41 42 43 44 48
|
syl31anc |
|
50 |
|
simpr1 |
|
51 |
49 50
|
eleqtrd |
|
52 |
|
ovex |
|
53 |
52
|
elsn |
|
54 |
51 53
|
sylib |
|
55 |
41 25
|
syl |
|
56 |
1 3 46
|
grpsubeq0 |
|
57 |
55 42 43 56
|
syl3anc |
|
58 |
54 57
|
mpbid |
|
59 |
58
|
3anassrs |
|
60 |
59
|
ex |
|
61 |
60
|
ralrimivva |
|
62 |
|
dff13 |
|
63 |
40 61 62
|
sylanbrc |
|
64 |
39 63
|
impbida |
|