Description: A group homomorphism F is injective if and only if its kernel is the singleton { N } . (Contributed by Thierry Arnoux, 27-Oct-2017) (Proof shortened by AV, 24-Oct-2019) (Revised by Thierry Arnoux, 13-May-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | f1ghm0to0.a | |
|
| f1ghm0to0.b | |
||
| f1ghm0to0.n | |
||
| f1ghm0to0.0 | |
||
| Assertion | kerf1ghm | |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ghm0to0.a | |
|
| 2 | f1ghm0to0.b | |
|
| 3 | f1ghm0to0.n | |
|
| 4 | f1ghm0to0.0 | |
|
| 5 | simpl | |
|
| 6 | f1fn | |
|
| 7 | 6 | adantl | |
| 8 | elpreima | |
|
| 9 | 7 8 | syl | |
| 10 | 9 | biimpa | |
| 11 | 10 | simpld | |
| 12 | 10 | simprd | |
| 13 | fvex | |
|
| 14 | 13 | elsn | |
| 15 | 12 14 | sylib | |
| 16 | 1 2 3 4 | f1ghm0to0 | |
| 17 | 16 | biimpd | |
| 18 | 17 | 3expa | |
| 19 | 18 | imp | |
| 20 | 5 11 15 19 | syl21anc | |
| 21 | 20 | ex | |
| 22 | velsn | |
|
| 23 | 21 22 | imbitrrdi | |
| 24 | 23 | ssrdv | |
| 25 | ghmgrp1 | |
|
| 26 | 1 3 | grpidcl | |
| 27 | 25 26 | syl | |
| 28 | 3 4 | ghmid | |
| 29 | fvex | |
|
| 30 | 29 | elsn | |
| 31 | 28 30 | sylibr | |
| 32 | 1 2 | ghmf | |
| 33 | ffn | |
|
| 34 | elpreima | |
|
| 35 | 32 33 34 | 3syl | |
| 36 | 27 31 35 | mpbir2and | |
| 37 | 36 | snssd | |
| 38 | 37 | adantr | |
| 39 | 24 38 | eqssd | |
| 40 | 32 | adantr | |
| 41 | simpl | |
|
| 42 | simpr2l | |
|
| 43 | simpr2r | |
|
| 44 | simpr3 | |
|
| 45 | eqid | |
|
| 46 | eqid | |
|
| 47 | 1 4 45 46 | ghmeqker | |
| 48 | 47 | biimpa | |
| 49 | 41 42 43 44 48 | syl31anc | |
| 50 | simpr1 | |
|
| 51 | 49 50 | eleqtrd | |
| 52 | ovex | |
|
| 53 | 52 | elsn | |
| 54 | 51 53 | sylib | |
| 55 | 25 | adantr | |
| 56 | 1 3 46 | grpsubeq0 | |
| 57 | 55 42 43 56 | syl3anc | |
| 58 | 54 57 | mpbid | |
| 59 | 58 | 3anassrs | |
| 60 | 59 | ex | |
| 61 | 60 | ralrimivva | |
| 62 | dff13 | |
|
| 63 | 40 61 62 | sylanbrc | |
| 64 | 39 63 | impbida | |