Metamath Proof Explorer


Theorem kgen2cn

Description: A continuous function is also continuous with the domain and codomain replaced by their compact generator topologies. (Contributed by Mario Carneiro, 21-Mar-2015)

Ref Expression
Assertion kgen2cn F J Cn K F 𝑘Gen J Cn 𝑘Gen K

Proof

Step Hyp Ref Expression
1 cntop1 F J Cn K J Top
2 toptopon2 J Top J TopOn J
3 1 2 sylib F J Cn K J TopOn J
4 kgentopon J TopOn J 𝑘Gen J TopOn J
5 3 4 syl F J Cn K 𝑘Gen J TopOn J
6 kgenss J Top J 𝑘Gen J
7 1 6 syl F J Cn K J 𝑘Gen J
8 eqid J = J
9 8 cnss1 𝑘Gen J TopOn J J 𝑘Gen J J Cn K 𝑘Gen J Cn K
10 5 7 9 syl2anc F J Cn K J Cn K 𝑘Gen J Cn K
11 kgenf 𝑘Gen : Top Top
12 ffn 𝑘Gen : Top Top 𝑘Gen Fn Top
13 11 12 ax-mp 𝑘Gen Fn Top
14 fnfvelrn 𝑘Gen Fn Top J Top 𝑘Gen J ran 𝑘Gen
15 13 1 14 sylancr F J Cn K 𝑘Gen J ran 𝑘Gen
16 cntop2 F J Cn K K Top
17 kgencn3 𝑘Gen J ran 𝑘Gen K Top 𝑘Gen J Cn K = 𝑘Gen J Cn 𝑘Gen K
18 15 16 17 syl2anc F J Cn K 𝑘Gen J Cn K = 𝑘Gen J Cn 𝑘Gen K
19 10 18 sseqtrd F J Cn K J Cn K 𝑘Gen J Cn 𝑘Gen K
20 id F J Cn K F J Cn K
21 19 20 sseldd F J Cn K F 𝑘Gen J Cn 𝑘Gen K