Metamath Proof Explorer


Theorem kgen2ss

Description: The compact generator preserves the subset (fineness) relationship on topologies. (Contributed by Mario Carneiro, 21-Mar-2015)

Ref Expression
Assertion kgen2ss J TopOn X K TopOn X J K 𝑘Gen J 𝑘Gen K

Proof

Step Hyp Ref Expression
1 simp1 J TopOn X K TopOn X J K J TopOn X
2 elpwi k 𝒫 X k X
3 resttopon J TopOn X k X J 𝑡 k TopOn k
4 1 2 3 syl2an J TopOn X K TopOn X J K k 𝒫 X J 𝑡 k TopOn k
5 simp2 J TopOn X K TopOn X J K K TopOn X
6 resttopon K TopOn X k X K 𝑡 k TopOn k
7 5 2 6 syl2an J TopOn X K TopOn X J K k 𝒫 X K 𝑡 k TopOn k
8 toponuni K 𝑡 k TopOn k k = K 𝑡 k
9 7 8 syl J TopOn X K TopOn X J K k 𝒫 X k = K 𝑡 k
10 9 fveq2d J TopOn X K TopOn X J K k 𝒫 X TopOn k = TopOn K 𝑡 k
11 4 10 eleqtrd J TopOn X K TopOn X J K k 𝒫 X J 𝑡 k TopOn K 𝑡 k
12 simpl2 J TopOn X K TopOn X J K k 𝒫 X K TopOn X
13 topontop K TopOn X K Top
14 12 13 syl J TopOn X K TopOn X J K k 𝒫 X K Top
15 simpl3 J TopOn X K TopOn X J K k 𝒫 X J K
16 ssrest K Top J K J 𝑡 k K 𝑡 k
17 14 15 16 syl2anc J TopOn X K TopOn X J K k 𝒫 X J 𝑡 k K 𝑡 k
18 eqid K 𝑡 k = K 𝑡 k
19 18 sscmp J 𝑡 k TopOn K 𝑡 k K 𝑡 k Comp J 𝑡 k K 𝑡 k J 𝑡 k Comp
20 19 3com23 J 𝑡 k TopOn K 𝑡 k J 𝑡 k K 𝑡 k K 𝑡 k Comp J 𝑡 k Comp
21 20 3expia J 𝑡 k TopOn K 𝑡 k J 𝑡 k K 𝑡 k K 𝑡 k Comp J 𝑡 k Comp
22 11 17 21 syl2anc J TopOn X K TopOn X J K k 𝒫 X K 𝑡 k Comp J 𝑡 k Comp
23 17 sseld J TopOn X K TopOn X J K k 𝒫 X x k J 𝑡 k x k K 𝑡 k
24 22 23 imim12d J TopOn X K TopOn X J K k 𝒫 X J 𝑡 k Comp x k J 𝑡 k K 𝑡 k Comp x k K 𝑡 k
25 24 ralimdva J TopOn X K TopOn X J K k 𝒫 X J 𝑡 k Comp x k J 𝑡 k k 𝒫 X K 𝑡 k Comp x k K 𝑡 k
26 25 anim2d J TopOn X K TopOn X J K x X k 𝒫 X J 𝑡 k Comp x k J 𝑡 k x X k 𝒫 X K 𝑡 k Comp x k K 𝑡 k
27 elkgen J TopOn X x 𝑘Gen J x X k 𝒫 X J 𝑡 k Comp x k J 𝑡 k
28 27 3ad2ant1 J TopOn X K TopOn X J K x 𝑘Gen J x X k 𝒫 X J 𝑡 k Comp x k J 𝑡 k
29 elkgen K TopOn X x 𝑘Gen K x X k 𝒫 X K 𝑡 k Comp x k K 𝑡 k
30 29 3ad2ant2 J TopOn X K TopOn X J K x 𝑘Gen K x X k 𝒫 X K 𝑡 k Comp x k K 𝑡 k
31 26 28 30 3imtr4d J TopOn X K TopOn X J K x 𝑘Gen J x 𝑘Gen K
32 31 ssrdv J TopOn X K TopOn X J K 𝑘Gen J 𝑘Gen K